Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
import librosa
|
6 |
+
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
|
7 |
+
|
8 |
+
# 1. Load your model & feature extractor
|
9 |
+
model_name = "path_or_hub_id_of_your_finetuned_model"
|
10 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
11 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
12 |
+
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
def classify_accuracy(audio):
|
16 |
+
"""
|
17 |
+
audio: This will be a tuple (sample_rate, audio_data) when using Gradio's microphone or file upload
|
18 |
+
We need to convert it to the correct format for the model.
|
19 |
+
"""
|
20 |
+
sample_rate, data = audio
|
21 |
+
|
22 |
+
# Convert audio data to float32 numpy array
|
23 |
+
if not isinstance(data, np.ndarray):
|
24 |
+
data = np.array(data)
|
25 |
+
|
26 |
+
# If sample_rate != 16000, resample (optional)
|
27 |
+
# For small demos, you can do it with librosa
|
28 |
+
if sample_rate != 16000:
|
29 |
+
data = librosa.resample(data, orig_sr=sample_rate, target_sr=16000)
|
30 |
+
sample_rate = 16000
|
31 |
+
|
32 |
+
# Extract features
|
33 |
+
inputs = feature_extractor(
|
34 |
+
data,
|
35 |
+
sampling_rate=sample_rate,
|
36 |
+
return_tensors="pt",
|
37 |
+
padding=True
|
38 |
+
)
|
39 |
+
|
40 |
+
with torch.no_grad():
|
41 |
+
outputs = model(**inputs)
|
42 |
+
logits = outputs.logits
|
43 |
+
predicted_id = torch.argmax(logits, dim=-1).item()
|
44 |
+
|
45 |
+
# Convert to final accuracy level
|
46 |
+
accuracy_level = predicted_id + 3 # or however you map 0..7 → 3..10
|
47 |
+
return f"Accuracy Level: {accuracy_level}"
|
48 |
+
|
49 |
+
# 2. Build Gradio interface
|
50 |
+
title = "Speech Accuracy Classifier"
|
51 |
+
description = "Upload an audio file (or record) to see the predicted accuracy level."
|
52 |
+
|
53 |
+
# We use "microphone=True" in gr.Audio if you want an optional mic input
|
54 |
+
# By default, "type='numpy'" returns (sample_rate, data)
|
55 |
+
demo = gr.Interface(
|
56 |
+
fn=classify_accuracy,
|
57 |
+
inputs=gr.Audio(source="upload", type="numpy"),
|
58 |
+
outputs="text",
|
59 |
+
title=title,
|
60 |
+
description=description,
|
61 |
+
allow_flagging="never" # optional
|
62 |
+
)
|
63 |
+
|
64 |
+
# 3. Launch the Gradio app
|
65 |
+
if __name__ == "__main__":
|
66 |
+
demo.launch()
|