LingoSpace / app.py
YanaGabelev's picture
Update app.py
117bc9e verified
"""
Smart Multilingual Translation Application
Built with Gradio and Hugging Face Transformers
Supports automatic language detection and translation to multiple languages
"""
import gradio as gr
import json
import os
from transformers import pipeline
from langdetect import detect, DetectorFactory
import warnings
warnings.filterwarnings("ignore")
# Set seed for consistent language detection results
DetectorFactory.seed = 0
# Optional: Try to import fasttext for better language detection
try:
import fasttext
FASTTEXT_AVAILABLE = True
except ImportError:
FASTTEXT_AVAILABLE = False
print("FastText not available. Using langdetect only.")
class RobustLanguageDetector:
"""
Robust language detection using multiple methods
"""
def __init__(self):
self.fasttext_model = None
if FASTTEXT_AVAILABLE:
self.load_fasttext_model()
def load_fasttext_model(self):
"""
Load FastText language identification model
Downloads automatically if not present
"""
model_path = "lid.176.ftz"
if not os.path.exists(model_path):
print("FastText model not found. Using langdetect only.")
return
try:
self.fasttext_model = fasttext.load_model(model_path)
print("FastText model loaded successfully")
except Exception as e:
print(f"Error loading FastText model: {e}")
self.fasttext_model = None
def detect_language(self, text):
"""
Detect language using fasttext with langdetect fallback and pattern matching
Args:
text (str): Input text to analyze
Returns:
tuple: (language_code, language_name, detection_method)
"""
text = text.strip()
if not text:
return "unknown", "Unknown", "empty"
# Try pattern-based detection for common phrases first
detected_lang = self.pattern_based_detection(text)
if detected_lang:
return detected_lang, detected_lang.upper(), "pattern_matching"
# Try FastText first if available
if self.fasttext_model:
try:
ft_pred = self.fasttext_model.predict(text, k=3) # Get top 3 predictions
ft_langs = [lang.replace("__label__", "") for lang in ft_pred[0]]
ft_confs = ft_pred[1]
# If highest confidence is high enough, use it
if ft_confs[0] >= 0.8:
return ft_langs[0], ft_langs[0].upper(), "fasttext_high_conf"
# If multiple similar Slavic languages detected, use context
slavic_langs = [lang for lang in ft_langs if lang in ['ru', 'mk', 'bg', 'sr', 'uk']]
if slavic_langs and self.is_cyrillic_russian(text):
return 'ru', 'RU', "fasttext_cyrillic_context"
# Use the highest confidence prediction
if ft_confs[0] >= 0.6:
return ft_langs[0], ft_langs[0].upper(), "fasttext_medium_conf"
except Exception as e:
print(f"FastText detection error: {e}")
# Fallback to langdetect with post-processing
try:
ld_lang = detect(text)
# Post-process common misdetections
if ld_lang == 'mk' and self.is_cyrillic_russian(text):
return 'ru', 'RU', "langdetect_corrected"
elif ld_lang == 'so' and self.is_likely_english(text):
return 'en', 'EN', "langdetect_corrected"
elif ld_lang in ['no', 'da', 'sv'] and self.is_likely_english(text):
return 'en', 'EN', "langdetect_corrected"
return ld_lang, ld_lang.upper(), "langdetect"
except Exception as e:
return "unknown", f"Detection Error: {str(e)}", "error"
def pattern_based_detection(self, text):
"""
Simple pattern-based language detection for common phrases
"""
text_lower = text.lower()
# Common English patterns
english_patterns = [
'hello', 'how are you', 'thank you', 'please', 'sorry', 'good', 'bad',
'yes', 'no', 'today', 'tomorrow', 'yesterday', 'morning', 'evening',
'welcome', 'goodbye', 'nice to meet you', 'see you later'
]
# Common Russian patterns
russian_patterns = [
'ะฟั€ะธะฒะตั‚', 'ะบะฐะบ ะดะตะปะฐ', 'ัะฟะฐัะธะฑะพ', 'ะฟะพะถะฐะปัƒะนัั‚ะฐ', 'ะทะดั€ะฐะฒัั‚ะฒัƒะนั‚ะต',
'ะดะพ ัะฒะธะดะฐะฝะธั', 'ะดะพะฑั€ะพ ะฟะพะถะฐะปะพะฒะฐั‚ัŒ', 'ะธะทะฒะธะฝะธั‚ะต', 'ั…ะพั€ะพัˆะพ', 'ัะตะณะพะดะฝั'
]
# Common Hebrew patterns
hebrew_patterns = [
'ืฉืœื•ื', 'ืื™ืš', 'ืชื•ื“ื”', 'ื‘ื‘ืงืฉื”', 'ืกืœื™ื—ื”', 'ื˜ื•ื‘', 'ืจืข', 'ื›ืŸ', 'ืœื',
'ื‘ื•ืงืจ ื˜ื•ื‘', 'ืœื™ืœื” ื˜ื•ื‘', 'ืžื” ืฉืœื•ืžืš', 'ื ืขื™ื ืœื”ื›ื™ืจ'
]
# Common Spanish patterns
spanish_patterns = [
'hola', 'como estas', 'como estรกs', 'gracias', 'por favor', 'perdon',
'perdรณn', 'bueno', 'malo', 'buenos dias', 'buenas noches'
]
# Common French patterns
french_patterns = [
'bonjour', 'comment allez-vous', 'comment รงa va', 'merci',
's\'il vous plaรฎt', 'pardon', 'au revoir', 'bonne nuit'
]
# Check English first (most common in examples)
for pattern in english_patterns:
if pattern in text_lower:
return 'en'
for pattern in russian_patterns:
if pattern in text_lower:
return 'ru'
for pattern in hebrew_patterns:
if pattern in text: # Don't lowercase Hebrew
return 'he'
for pattern in spanish_patterns:
if pattern in text_lower:
return 'es'
for pattern in french_patterns:
if pattern in text_lower:
return 'fr'
return None
def is_likely_english(self, text):
"""
Check if text is likely English based on common English words
"""
text_lower = text.lower()
english_indicators = [
'the', 'and', 'you', 'are', 'how', 'what', 'where', 'when', 'why',
'hello', 'today', 'tomorrow', 'good', 'thank', 'please', 'welcome'
]
# Check if text contains common English words
word_count = 0
english_word_count = 0
for word in text_lower.split():
word_count += 1
if word in english_indicators:
english_word_count += 1
# If more than 30% are English words, likely English
if word_count > 0:
return (english_word_count / word_count) > 0.3
return False
def is_cyrillic_russian(self, text):
"""
Check if Cyrillic text is likely Russian based on character patterns
"""
# Russian-specific Cyrillic characters
russian_chars = {'ั‹', 'ั', 'ัŠ', 'ั‘'}
# Macedonian-specific characters
macedonian_chars = {'ั•', 'ั™', 'ัš', 'ัœ', 'ั“', 'ัŸ'}
text_chars = set(text.lower())
# If contains Russian-specific chars, likely Russian
if any(char in text_chars for char in russian_chars):
return True
# If contains Macedonian-specific chars, likely not Russian
if any(char in text_chars for char in macedonian_chars):
return False
# Default: if mostly Cyrillic and no Macedonian markers, assume Russian
cyrillic_count = sum(1 for char in text if '\u0400' <= char <= '\u04FF')
return cyrillic_count > len(text) * 0.7
class SmartTranslator:
"""
Smart multilingual translator with robust language detection
"""
def __init__(self):
self.language_detector = RobustLanguageDetector()
self.translators = {}
self.supported_languages = {
'en': 'English',
'he': 'Hebrew',
'ar': 'Arabic',
'es': 'Spanish',
'fr': 'French',
'de': 'German',
'it': 'Italian',
'pt': 'Portuguese',
'ru': 'Russian',
'zh': 'Chinese',
'ja': 'Japanese',
'ko': 'Korean',
'fi': 'Finnish',
'sv': 'Swedish',
'no': 'Norwegian',
'da': 'Danish',
'nl': 'Dutch'
}
self.load_language_models()
def load_language_models(self):
"""
Load translation models from Hugging Face Hub
Uses Helsinki-NLP OPUS-MT models for high-quality translation
Falls back to simpler models if main models fail to load
"""
print("Loading translation models...")
# List of models to try loading
model_configs = [
('to_en', 'Helsinki-NLP/opus-mt-mul-en'),
('to_he', 'Helsinki-NLP/opus-mt-en-he'),
('to_es', 'Helsinki-NLP/opus-mt-en-es'),
('to_fr', 'Helsinki-NLP/opus-mt-en-fr'),
('to_ru', 'Helsinki-NLP/opus-mt-en-ru')
]
# Try to load each model individually
for key, model_name in model_configs:
try:
print(f"Loading {model_name}...")
self.translators[key] = pipeline("translation", model=model_name)
print(f"โœ“ Successfully loaded {key}")
except Exception as e:
print(f"โœ— Failed to load {key}: {e}")
self.translators[key] = None
# Check if at least one model loaded
loaded_models = [k for k, v in self.translators.items() if v is not None]
print(f"Successfully loaded {len(loaded_models)} out of {len(model_configs)} models: {loaded_models}")
def detect_language(self, text):
"""
Detect the language of input text using robust detection
Args:
text (str): Input text to analyze
Returns:
tuple: (language_code, language_name, detection_method)
"""
detected_lang, lang_display, method = self.language_detector.detect_language(text)
language_name = self.supported_languages.get(detected_lang, lang_display)
return detected_lang, language_name, method
def translate_text(self, text, source_lang, target_lang):
"""
Translate text from source language to target language
Uses two-step translation for non-English source languages
Args:
text (str): Text to translate
source_lang (str): Source language code
target_lang (str): Target language code
Returns:
str: Translated text or error message
"""
try:
if not text.strip():
return "No text to translate"
# If source is same as target, return original text
if source_lang == target_lang:
return text
# Handle non-English to non-English translation via English
if source_lang != 'en' and target_lang != 'en':
# Two-step translation: source -> English -> target
if self.translators.get('to_en'):
try:
english_text = self.translators['to_en'](text)[0]['translation_text']
except Exception as e:
return f"Step 1 translation failed: {str(e)}"
else:
english_text = text # Fallback to original text
# Then translate English to target language
translator_key = f'to_{target_lang}'
if self.translators.get(translator_key):
try:
result = self.translators[translator_key](english_text)[0]['translation_text']
return result
except Exception as e:
return f"Step 2 translation failed: {str(e)}"
else:
return f"Translation to {target_lang} not available"
# Direct translation from non-English to English
elif source_lang != 'en':
if self.translators.get('to_en'):
try:
return self.translators['to_en'](text)[0]['translation_text']
except Exception as e:
return f"Translation to English failed: {str(e)}"
else:
return "Translation to English not available"
# Direct translation from English to target language
else:
translator_key = f'to_{target_lang}'
if self.translators.get(translator_key):
try:
return self.translators[translator_key](text)[0]['translation_text']
except Exception as e:
return f"Translation to {target_lang} failed: {str(e)}"
else:
return f"Translation to {target_lang} not available"
except Exception as e:
return f"Translation error: {str(e)}"
def process_text(self, input_text):
"""
Main processing function that handles language detection and translation
Args:
input_text (str): User input text
Returns:
tuple: All outputs for Gradio interface
"""
if not input_text.strip():
return (
"Please enter some text to translate.", # detection_output
"", # translation1
"", # translation2
"", # translation3
"", # translation4
"", # translation5
"", # status_output
)
try:
# Detect the language of input text with robust detection
detected_lang, language_name, detection_method = self.detect_language(input_text)
# Define target languages for translation (English, Hebrew, Spanish, Russian, French)
target_languages = ['en', 'he', 'es', 'ru', 'fr']
# Generate translations for each target language
translations = []
for target_lang in target_languages:
if detected_lang != target_lang:
translation = self.translate_text(input_text, detected_lang, target_lang)
lang_name = self.supported_languages.get(target_lang, target_lang.upper())
translations.append(f"**{lang_name}:** {translation}")
else:
lang_name = self.supported_languages.get(target_lang, target_lang.upper())
translations.append(f"**{lang_name}:** (Original text)")
# Prepare formatted output with detection method info
detection_result = f"**Detected Language:** {language_name} ({detected_lang}) - *Method: {detection_method}*"
# Ensure we have exactly 5 translations
while len(translations) < 5:
translations.append("")
return (
detection_result, # detection_output
translations[0], # translation1 (English)
translations[1], # translation2 (Hebrew)
translations[2], # translation3 (Spanish)
translations[3], # translation4 (Russian)
translations[4], # translation5 (French)
f"โœ… **Translation Complete!** Processed text in {language_name} using {detection_method}" # status_output
)
except Exception as e:
error_msg = f"Processing error: {str(e)}"
return (
error_msg, # detection_output
"", # translation1
"", # translation2
"", # translation3
"", # translation4
"", # translation5
error_msg # status_output
)
# Initialize the translator instance
print("Initializing Smart Translator...")
translator = SmartTranslator()
def create_interface():
"""
Create the Gradio interface for the Smart Multilingual Translator
Returns:
gr.Blocks: Configured Gradio application interface
"""
with gr.Blocks(title="Smart Multilingual Translator", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# ๐ŸŒ Smart Multilingual Translator
### Powered by Hugging Face Transformers + Robust Language Detection
Enter text in any language and get automatic translations to English, Hebrew, Spanish, Russian, and French!
**Features:**
- ๐ŸŽฏ Smart language detection with pattern matching for common phrases
- ๐Ÿ” Multi-layer detection: Pattern โ†’ FastText โ†’ langdetect with corrections
- ๐Ÿ”„ High-quality translation with Helsinki-NLP models
- ๐ŸŒ Support for 15+ languages with Slavic language disambiguation
- ๐ŸŽจ Translation to 5 target languages: English, Hebrew, Spanish, Russian, French
""")
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(
label="Enter text to translate",
placeholder="Type or paste text in any language...",
lines=4,
max_lines=10
)
translate_btn = gr.Button("๐Ÿ”„ Translate", variant="primary", size="lg")
clear_btn = gr.Button("๐Ÿ—‘๏ธ Clear", variant="secondary")
with gr.Column(scale=3):
with gr.Group():
detection_output = gr.Markdown(label="Language Detection")
translation1 = gr.Markdown(label="English Translation")
translation2 = gr.Markdown(label="Hebrew Translation")
translation3 = gr.Markdown(label="Spanish Translation")
translation4 = gr.Markdown(label="Russian Translation")
translation5 = gr.Markdown(label="French Translation")
status_output = gr.Markdown(label="Status")
# Example inputs for testing different languages
gr.Markdown("### ๐Ÿ“ Try these examples:")
gr.Examples(
examples=[
["Hello, how are you today?"],
["ืฉืœื•ื, ืื™ืš ืืชื” ื”ื™ื•ื?"],
["Hola, ยฟcรณmo estรกs hoy?"],
["Bonjour, comment allez-vous?"],
["Guten Tag, wie geht es Ihnen?"],
["ะŸั€ะธะฒะตั‚, ะบะฐะบ ะดะตะปะฐ?"],
["ใ“ใ‚“ใซใกใฏใ€ๅ…ƒๆฐ—ใงใ™ใ‹๏ผŸ"],
["ู…ุฑุญุจุงุŒ ูƒูŠู ุญุงู„ูƒ ุงู„ูŠูˆู…ุŸ"],
["Ciao, come stai?"],
["Hej, hur mรฅr du?"]
],
inputs=input_text
)
# Event handlers for user interactions
translate_btn.click(
fn=translator.process_text,
inputs=[input_text],
outputs=[detection_output, translation1, translation2, translation3, translation4, translation5, status_output]
)
clear_btn.click(
fn=lambda: ("", "", "", "", "", "", ""),
outputs=[input_text, detection_output, translation1, translation2, translation3, translation4, translation5]
)
# Auto-translate when user presses Enter
input_text.submit(
fn=translator.process_text,
inputs=[input_text],
outputs=[detection_output, translation1, translation2, translation3, translation4, translation5, status_output]
)
gr.Markdown("""
---
**Technical Details:**
- Language Detection: 3-layer system (Pattern matching โ†’ FastText โ†’ langdetect + corrections)
- Slavic Language Disambiguation: Special handling for Russian/Macedonian/Bulgarian confusion
- Translation Models: Helsinki-NLP OPUS-MT series
- Target Languages: English, Hebrew, Spanish, Russian, French
- Supported Input Languages: 15+ major world languages
- Two-step translation for optimal quality
**Note:** Translation quality may vary depending on the source and target languages.
Models load individually, so some translations may be unavailable if models fail to load.
""")
return app
if __name__ == "__main__":
print("Creating Gradio interface...")
# Create and launch the Gradio application
app = create_interface()
print("Launching application...")
app.launch(share=True) # share=True creates a public link