madankn79 commited on
Commit
d665d2a
·
1 Parent(s): 3d19915
Files changed (1) hide show
  1. app.py +2 -1
app.py CHANGED
@@ -45,6 +45,7 @@ def emphasize_keywords(text, keywords, repeat=3):
45
  def clean_text(input_text):
46
  cleaned = re.sub(r"[^A-Za-z0-9\s]", " ", input_text)
47
  cleaned = re.sub(r"\b[A-Za-z]{2,}[0-9]{3,}\b", "", cleaned) # SKU/product code pattern (letters followed by numbers)
 
48
  cleaned = re.sub(r"\b\d+\b", "", cleaned) # Remove numbers as tokens
49
 
50
  # Example keyword list
@@ -98,7 +99,7 @@ def summarize_text(input_text, model_label, char_limit):
98
  do_sample=False, # Disable sampling to avoid introducing new words
99
  num_beams=5, # Beam search to find the most likely sequence of tokens
100
  early_stopping=True, # Stop once a reasonable summary is generated
101
- no_repeat_ngram_size=2 # Prevent repetition of n-grams (bigrams in this case)
102
  )
103
 
104
 
 
45
  def clean_text(input_text):
46
  cleaned = re.sub(r"[^A-Za-z0-9\s]", " ", input_text)
47
  cleaned = re.sub(r"\b[A-Za-z]{2,}[0-9]{3,}\b", "", cleaned) # SKU/product code pattern (letters followed by numbers)
48
+ cleaned = re.sub(r"\b[A-Za-z]{2,}[0-9]{2,}\b", "", cleaned)
49
  cleaned = re.sub(r"\b\d+\b", "", cleaned) # Remove numbers as tokens
50
 
51
  # Example keyword list
 
99
  do_sample=False, # Disable sampling to avoid introducing new words
100
  num_beams=5, # Beam search to find the most likely sequence of tokens
101
  early_stopping=True, # Stop once a reasonable summary is generated
102
+ no_repeat_ngram_size=1 # Prevent repetition of n-grams (bigrams in this case)
103
  )
104
 
105