/* eslint-disable no-restricted-globals */ import { pipeline } from '@huggingface/transformers'; class MyTextClassificationPipeline { static task = 'text-classification'; static model = 'Xenova/bert-base-multilingual-uncased-sentiment'; static instance = null; static async getInstance(progress_callback = null) { this.instance ??= pipeline(this.task, this.model, { progress_callback }); return this.instance; } } // Listen for messages from the main thread self.addEventListener('message', async (event) => { // Retrieve the pipeline. When called for the first time, // this will load the pipeline and save it for future use. const classifier = await MyTextClassificationPipeline.getInstance((x) => { // We also add a progress callback to the pipeline so that we can // track model loading. self.postMessage({ status: 'progress', output: x }); }); const { text } = event.data; const split = text.split('\n'); for (const line of split) { if (line.trim()) { const output = await classifier(line); // Send the output back to the main thread self.postMessage({ status: 'output', output: { sequence: line, labels: [output[0].label], scores: [output[0].score] } }); } } // Send the output back to the main thread self.postMessage({ status: 'complete' }); });