/* eslint-disable no-restricted-globals */ | |
import { pipeline } from '@huggingface/transformers'; | |
class MyTextClassificationPipeline { | |
static task = 'text-classification'; | |
static model = 'Xenova/bert-base-multilingual-uncased-sentiment'; | |
static instance = null; | |
static async getInstance(progress_callback = null) { | |
this.instance ??= pipeline(this.task, this.model, { | |
progress_callback | |
}); | |
return this.instance; | |
} | |
} | |
// Listen for messages from the main thread | |
self.addEventListener('message', async (event) => { | |
// Retrieve the pipeline. When called for the first time, | |
// this will load the pipeline and save it for future use. | |
const classifier = await MyTextClassificationPipeline.getInstance((x) => { | |
// We also add a progress callback to the pipeline so that we can | |
// track model loading. | |
self.postMessage({ status: 'progress', output: x }); | |
}); | |
const { text } = event.data; | |
const split = text.split('\n'); | |
for (const line of split) { | |
if (line.trim()) { | |
const output = await classifier(line); | |
// Send the output back to the main thread | |
self.postMessage({ | |
status: 'output', | |
output: { | |
sequence: line, | |
labels: [output[0].label], | |
scores: [output[0].score] | |
} | |
}); | |
} | |
} | |
// Send the output back to the main thread | |
self.postMessage({ status: 'complete' }); | |
}); | |