File size: 7,578 Bytes
4d810fa
117cfaa
 
 
 
 
96812c9
4d810fa
 
 
 
96812c9
 
 
117cfaa
96812c9
 
 
 
 
 
4d810fa
6ebf2fd
4d810fa
6ebf2fd
046ca57
 
 
6ebf2fd
322c234
4d810fa
 
 
 
 
 
 
 
 
 
 
 
322c234
 
 
4d810fa
 
 
 
 
 
 
 
 
 
 
 
322c234
 
4d810fa
 
 
 
 
dc79f22
4d810fa
 
 
 
6ebf2fd
 
 
 
 
 
 
 
79eafc9
 
 
 
 
 
 
 
 
 
 
 
 
 
97cab0c
 
 
4d810fa
 
 
97cab0c
 
 
 
 
 
 
 
 
4d810fa
6ebf2fd
 
 
 
117cfaa
6ebf2fd
 
 
 
 
97cab0c
4d810fa
6ebf2fd
 
 
 
 
 
4d810fa
 
79eafc9
 
6ebf2fd
 
 
4d810fa
97cab0c
4d810fa
6ebf2fd
 
 
 
97cab0c
79eafc9
 
6ebf2fd
96812c9
 
59a1fe9
322c234
59a1fe9
0250375
322c234
25e8265
322c234
117cfaa
322c234
 
 
4d810fa
 
 
322c234
 
 
0250375
322c234
0250375
322c234
117cfaa
322c234
 
0250375
4d810fa
 
 
322c234
 
 
 
4d810fa
 
 
 
 
322c234
 
 
 
 
 
 
 
 
 
 
25e8265
25647ae
 
 
 
79eafc9
25647ae
 
 
322c234
4d810fa
25e8265
322c234
 
 
 
 
 
59a1fe9
322c234
59a1fe9
117cfaa
59a1fe9
 
 
4d810fa
 
 
 
59a1fe9
 
322c234
4d810fa
 
 
322c234
 
ad5cef3
 
 
 
97cab0c
 
ad5cef3
322c234
59a1fe9
4d810fa
322c234
59a1fe9
 
1150456
 
 
 
 
 
 
6ebf2fd
1150456
 
 
6ebf2fd
1150456
 
6ebf2fd
 
 
 
1150456
 
6ebf2fd
4d810fa
 
1150456
4d810fa
1150456
 
 
 
 
 
 
 
4d810fa
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import { supportedPipelines } from '../components/PipelineSelector'
import {
  allQuantizationTypes,
  ModelInfoResponse,
  QuantizationType
} from '../types'

const getModelInfo = async (
  modelName: string,
  pipeline: string
): Promise<ModelInfoResponse> => {
  const response = await fetch(
    `https://huggingface.co/api/models/${modelName}`,
    {
      method: 'GET'
    }
  )

  if (!response.ok) {
    throw new Error(`Failed to fetch model info: ${response.statusText}`)
  }

  const modelData: ModelInfoResponse = await response.json()

  const requiredFiles = [
    'config.json'
    // 'tokenizer.json',
    // 'tokenizer_config.json'
  ]

  const siblingFiles = modelData.siblings?.map((s) => s.rfilename) || []
  const missingFiles = requiredFiles.filter(
    (file) => !siblingFiles.includes(file)
  )
  const hasOnnxFolder = siblingFiles.some(
    (file) => file.endsWith('.onnx') && file.startsWith('onnx/')
  )

  const isCompatible =
    missingFiles.length === 0 &&
    hasOnnxFolder &&
    modelData.tags.includes(pipeline)

  let incompatibilityReason = ''
  if (!modelData.tags.includes(pipeline)) {
    const expectedPipelines = modelData.tags
      .filter((tag) => supportedPipelines.includes(tag))
      .join(', ')
    incompatibilityReason = expectedPipelines
      ? `- Model can be used with ${expectedPipelines} pipelines only\n`
      : `- Pipeline ${pipeline} not supported by the model\n`
  }
  if (missingFiles.length > 0) {
    incompatibilityReason += `- Missing required files: ${missingFiles.join(
      ', '
    )}\n`
  } else if (!hasOnnxFolder) {
    incompatibilityReason += '- Folder onnx/ is missing\n'
  }
  const supportedQuantizations = hasOnnxFolder
    ? siblingFiles
        .filter((file) => file.endsWith('.onnx') && file.includes('_'))
        .map((file) => file.split('/')[1].split('_')[1].split('.')[0])
        .filter((q) => q !== 'quantized')
        .filter((q) => allQuantizationTypes.includes(q as QuantizationType))
    : []
  const uniqueSupportedQuantizations = Array.from(
    new Set(supportedQuantizations)
  )
  uniqueSupportedQuantizations.sort((a, b) => {
    const getNumericValue = (str: string) => {
      const match = str.match(/(\d+)/)
      return match ? parseInt(match[1]) : Infinity
    }
    return getNumericValue(a) - getNumericValue(b)
  })

  if (
    uniqueSupportedQuantizations.length === 0 &&
    siblingFiles.some((file) => file.endsWith('_quantized.onnx'))
  ) {
    uniqueSupportedQuantizations.push('q8')
  }

  const voices: string[] = []
  siblingFiles
    .filter((file) => file.startsWith('voices/') && !file.endsWith('af.bin'))
    .forEach((file) => {
      voices.push(file.split('/')[1].split('.')[0])
    })

  // Fetch README content
  const fetchReadme = async (modelId: string): Promise<string> => {
    try {
      const readmeResponse = await fetch(
        `https://huggingface.co/${modelId}/raw/main/README.md`
      )
      if (readmeResponse.ok) {
        return await readmeResponse.text()
      }
    } catch (error) {
      console.warn(`Failed to fetch README for ${modelId}:`, error)
    }
    return ''
  }

  const baseModel = modelData.cardData?.base_model ?? modelData.modelId
  if (baseModel && !modelData.safetensors) {
    const baseModelResponse = await fetch(
      `https://huggingface.co/api/models/${baseModel}`,
      {
        method: 'GET'
      }
    )

    if (baseModelResponse.ok) {
      const baseModelData: ModelInfoResponse = await baseModelResponse.json()
      const readme = await fetchReadme(baseModel)

      return {
        ...baseModelData,
        id: modelData.id,
        baseId: baseModel,
        isCompatible,
        incompatibilityReason,
        supportedQuantizations:
          uniqueSupportedQuantizations as QuantizationType[],
        readme,
        voices
      }
    }
  }

  const readme = await fetchReadme(modelData.id)

  return {
    ...modelData,
    isCompatible,
    incompatibilityReason,
    supportedQuantizations: uniqueSupportedQuantizations as QuantizationType[],
    readme,
    voices
  }
}

const getModelsByPipeline = async (
  pipelineTag: string
): Promise<ModelInfoResponse[]> => {
  // Second search with search=onnx
  const response1 = await fetch(
    `https://huggingface.co/api/models?filter=${pipelineTag}&search=onnx-community&sort=createdAt&limit=15`,
    {
      method: 'GET'
    }
  )
  if (!response1.ok) {
    throw new Error(
      `Failed to fetch models for pipeline: ${response1.statusText}`
    )
  }
  const models1 = await response1.json()

  // First search with filter=onnx
  const response2 = await fetch(
    `https://huggingface.co/api/models?filter=${pipelineTag}${pipelineTag === 'feature-extraction' ? '&library=sentence-transformers' : '&filter=onnx'}&sort=downloads&limit=50`,
    {
      method: 'GET'
    }
  )
  if (!response1.ok) {
    throw new Error(
      `Failed to fetch models for pipeline: ${response2.statusText}`
    )
  }
  const models2 = await response2.json()

  // Combine and deduplicate models based on id
  const combinedModels = [...models1, ...models2].filter(
    (m: ModelInfoResponse) => m.createdAt > '2022/02/03'
  )
  const uniqueModels = combinedModels.filter(
    (model, index, self) => index === self.findIndex((m) => m.id === model.id)
  )

  if (pipelineTag === 'text-classification') {
    return uniqueModels
      .filter(
        (model: ModelInfoResponse) =>
          !model.tags.includes('reranker') &&
          !model.id.includes('reranker') &&
          !model.id.includes('ms-marco') &&
          !model.id.includes('MiniLM')
      )
      .slice(0, 30)
  } else if (pipelineTag === 'text-to-speech') {
    return uniqueModels
      .filter(
        (model: ModelInfoResponse) =>
          // !model.tags.includes('style_text_to_speech_2') &&
          !model.id.includes('qwen2')
      )
      .slice(0, 30)
  }

  return uniqueModels.slice(0, 30)
}

const getModelsByPipelineCustom = async (
  searchString: string,
  pipelineTag: string
): Promise<ModelInfoResponse[]> => {
  const response = await fetch(
    `https://huggingface.co/api/models?filter=${pipelineTag}&search=${searchString}&sort=downloads&limit=50`,
    {
      method: 'GET'
    }
  )

  if (!response.ok) {
    throw new Error(
      `Failed to fetch models for pipeline: ${response.statusText}`
    )
  }
  const models = await response.json()

  const uniqueModels = models.filter(
    (m: ModelInfoResponse) => m.createdAt > '2022/02/03'
  )
  if (pipelineTag === 'text-classification') {
    return uniqueModels
      .filter(
        (model: ModelInfoResponse) =>
          !model.tags.includes('reranker') &&
          !model.id.includes('reranker') &&
          !model.id.includes('ms-marco') &&
          !model.id.includes('MiniLM')
      )
      .slice(0, 20)
  }

  return uniqueModels.slice(0, 20)
}

function getModelSize(
  parameters: number,
  quantization: QuantizationType
): number {
  let bytesPerParameter: number

  switch (quantization) {
    case 'fp32':
      // 32-bit floating point uses 4 bytes
      bytesPerParameter = 4
      break
    case 'fp16':
      bytesPerParameter = 2
      break
    case 'int8':
    case 'bnb8':
    case 'uint8':
    case 'q8':
      bytesPerParameter = 1
      break
    case 'bnb4':
    case 'q4':
    case 'q4f16':
      bytesPerParameter = 0.5
      break
  }

  const sizeInBytes = parameters * bytesPerParameter
  const sizeInMB = sizeInBytes / (1024 * 1024)

  return sizeInMB
}

export {
  getModelInfo,
  getModelSize,
  getModelsByPipeline,
  getModelsByPipelineCustom
}