File size: 7,451 Bytes
f3b30b4
5b8fd7e
 
 
 
 
1b3b6e1
5b8fd7e
2656c1e
85a4687
9283c8b
85a4687
9283c8b
 
85a4687
9283c8b
85a4687
9283c8b
 
 
ad5cef3
85a4687
08476ef
96812c9
f3b30b4
5b8fd7e
f3b30b4
 
 
0c10cf2
f3b30b4
 
 
 
5b8fd7e
f3b30b4
 
 
 
 
 
 
 
 
 
 
 
 
59a1fe9
85a4687
4d810fa
 
 
 
96812c9
e7ba29d
 
 
2656c1e
5b8fd7e
 
e7ba29d
4d810fa
5b8fd7e
85a4687
0c10cf2
 
 
 
 
 
 
 
 
5b8fd7e
0c10cf2
 
 
 
 
 
 
e7ba29d
 
85a4687
96812c9
 
85a4687
 
a68c0b7
f7c4172
08476ef
6e6e4d8
85a4687
a68c0b7
5541427
f3b30b4
 
 
a68c0b7
bd915ca
a68c0b7
 
bd915ca
 
 
 
08476ef
5541427
bd915ca
5541427
bd915ca
 
 
f3b30b4
 
bd915ca
 
 
 
 
5541427
bd915ca
 
 
 
 
85a4687
 
 
 
a68c0b7
5541427
85a4687
 
08476ef
a68c0b7
85a4687
 
 
 
 
 
 
5541427
5b8fd7e
85a4687
 
5b8fd7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85a4687
 
 
 
 
 
 
 
96812c9
85a4687
 
ad5cef3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import { useState, useCallback, useEffect } from 'react'
import {
  ClassificationOutput,
  TextClassificationWorkerInput,
  WorkerMessage
} from '../../types'
import { useModel } from '../../contexts/ModelContext'
import { useTextClassification } from '../../contexts/TextClassificationContext'

const PLACEHOLDER_TEXTS: string[] = [
  'I absolutely love this product! It exceeded all my expectations.',
  "This is the worst purchase I've ever made. Complete waste of money.",
  'The service was okay, nothing special but not terrible either.',
  'Amazing quality and fast delivery. Highly recommended!',
  "I'm not sure how I feel about this. It's decent but could be better.",
  'Terrible customer service. They were rude and unhelpful.',
  "Great value for money. I'm very satisfied with my purchase.",
  'The product arrived damaged and the return process was a nightmare.',
  'Pretty good overall. A few minor issues but mostly positive experience.',
  'Outstanding! This company really knows how to treat their customers.'
].sort(() => Math.random() - 0.5)

function TextClassification() {
  const [text, setText] = useState<string>(PLACEHOLDER_TEXTS.join('\n'))
  const [numberExamples, setNumberExamples] = useState(PLACEHOLDER_TEXTS.length)
  const [results, setResults] = useState<ClassificationOutput[]>([])
  const {
    activeWorker,
    status,
    setStatus,
    modelInfo,
    hasBeenLoaded,
    selectedQuantization
  } = useModel()
  const { config } = useTextClassification()

  useEffect(() => {
    if (modelInfo?.widgetData) {
      const examples = modelInfo.widgetData.map((e: any) => e.text)
      if (examples.length > 0) {
        setText(examples.join('\n'))
      }
    }
  }, [modelInfo])

  useEffect(() => {
    setNumberExamples(text.split('\n').length)
  }, [text])

  const classify = useCallback(() => {
    if (!modelInfo || !activeWorker) {
      console.error('Model info or worker is not available')
      return
    }
    setResults([]) // Clear previous results
    const message: TextClassificationWorkerInput = {
      type: 'classify',
      text,
      model: modelInfo.id,
      dtype: selectedQuantization ?? 'fp32',
      config
    }
    activeWorker.postMessage(message)
  }, [text, modelInfo, activeWorker, selectedQuantization, config, setResults])

  // Handle worker messages
  useEffect(() => {
    if (!activeWorker) return

    const onMessageReceived = (e: MessageEvent<WorkerMessage>) => {
      const status = e.data.status
      if (status === 'output') {
        setStatus('output')
        const result = e.data.output!
        setResults((prev: ClassificationOutput[]) => [...prev, result])
      }
    }

    activeWorker.addEventListener('message', onMessageReceived)
    return () => activeWorker.removeEventListener('message', onMessageReceived)
  }, [activeWorker, setStatus])

  const busy: boolean = status !== 'ready'

  const handleClear = (): void => {
    setResults([])
  }

  return (
    <div className="flex flex-col h-full max-h-[calc(100dvh-148px)] w-full p-4 overflow-hidden">
      <h1 className="text-2xl font-bold mb-4 shrink-0">Text Classification</h1>

      <div className="flex flex-col lg:flex-row gap-4 flex-1 min-h-0 overflow-hidden">
        {/* Input Section */}
        <div className="flex flex-col w-full lg:w-1/2 min-h-0 overflow-hidden">
          <label className="text-lg font-medium mb-2 shrink-0">
            Input Text ({numberExamples} examples):
          </label>

          <div className="flex flex-col flex-1 min-h-0 overflow-hidden">
            <textarea
            
              className="border border-gray-300 rounded-sm p-3 flex-1 resize-none overflow-y-auto min-h-[150px] lg:min-h-[250px]"
              value={text}
              onChange={(e) => setText(e.target.value)}
              placeholder="Enter text to classify (one per line)..."
            />

            <div className="flex gap-2 mt-4 shrink-0">
              <button
                className="flex-1 py-2 px-4 bg-blue-500 hover:bg-blue-600 rounded-sm text-white font-medium disabled:opacity-50 disabled:cursor-not-allowed transition-colors"
                disabled={busy}
                onClick={classify}
              >
                {hasBeenLoaded
                  ? !busy
                    ? 'Classify Text'
                    : 'Processing...'
                  : 'Load model first'}
              </button>
              <button
                className="py-2 px-4 bg-gray-500 hover:bg-gray-600 rounded-sm text-white font-medium transition-colors"
                onClick={handleClear}
              >
                Clear Results
              </button>
            </div>
          </div>
        </div>

        {/* Results Section */}
        <div className="flex flex-col w-full lg:w-1/2 min-h-0 overflow-hidden">
          <label className="text-lg font-medium mb-2 shrink-0">
            Classification Results ({results.length}):
          </label>

          <div className="border border-gray-300 rounded-sm p-3 flex-1 overflow-y-auto">
            {results.length === 0 ? (
              <div className="text-gray-500 text-center py-8">
                No results yet. Click "Classify Text" to analyze your input.
              </div>
            ) : (
              <div className="space-y-3">
                {results.map((result, index) => (
                  <div key={index} className="p-3 rounded-sm border-2">
                    <div className="text-sm text-gray-700 mb-3">
                      {result.sequence}
                    </div>
                    <div className="space-y-2">
                      {result.labels.map(
                        (label: string, labelIndex: number) => {
                          const score = result.scores[labelIndex]
                          const isTopPrediction = labelIndex === 0

                          return (
                            <div
                              key={labelIndex}
                              className={`flex justify-between items-center p-2 rounded ${
                                isTopPrediction
                                  ? 'bg-blue-50 border-l-4 border-blue-500'
                                  : 'bg-gray-50'
                              }`}
                            >
                              <span
                                className={`font-medium text-sm ${
                                  isTopPrediction
                                    ? 'text-blue-700'
                                    : 'text-gray-700'
                                }`}
                              >
                                {label}
                              </span>
                              <span
                                className={`text-sm font-mono ${
                                  isTopPrediction
                                    ? 'text-blue-600'
                                    : 'text-gray-600'
                                }`}
                              >
                                {(score * 100).toFixed(1)}%
                              </span>
                            </div>
                          )
                        }
                      )}
                    </div>
                  </div>
                ))}
              </div>
            )}
          </div>
        </div>
      </div>
    </div>
  )
}

export default TextClassification