File size: 3,576 Bytes
046ca57
415aaef
046ca57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415aaef
 
 
 
 
 
 
046ca57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca67cfa
046ca57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca67cfa
046ca57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/* eslint-disable no-restricted-globals */
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers@latest'

class MyImageClassificationPipeline {
  static task = 'image-classification'
  static instance = null
  static modelId = null

  static async getInstance(model, dtype = 'fp32', progress_callback = null) {
    if (this.modelId !== model) {
      // Dispose of previous pipeline if model changed
      if (this.instance && this.instance.dispose) {
        this.instance.dispose()
      }
      this.instance = null
      this.modelId = null
    }

    if (!this.instance) {
      try {
        // Try WebGPU first
        throw Error('onnxruntime-web failed for image-classification with transformers 3.7.1')

        // this.instance = await pipeline(this.task, model, {
        //   dtype,
        //   device: 'webgpu',
        //   progress_callback
        // })
      } catch (webgpuError) {
        // Fallback to WASM if WebGPU fails
        if (progress_callback) {
          progress_callback({
            status: 'fallback',
            message: 'WebGPU failed, falling back to WASM'
          })
        }
        try {
          this.instance = await pipeline(this.task, model, {
            dtype,
            device: 'wasm',
            progress_callback
          })
        } catch (wasmError) {
          throw new Error(
            `Both WebGPU and WASM failed. WebGPU error: ${webgpuError.message}. WASM error: ${wasmError.message}`
          )
        }
      }
      this.modelId = model
    }

    return this.instance
  }

  static dispose() {
    if (this.instance && this.instance.dispose) {
      this.instance.dispose()
    }
    this.instance = null
    this.modelId = null
  }
}

// Listen for messages from the main thread
self.addEventListener('message', async (event) => {
  try {
    const { type, image, model, dtype, config } = event.data

    if (!model) {
      self.postMessage({
        status: 'error',
        output: 'No model provided'
      })
      return
    }

    // Get the pipeline instance
    const classifier = await MyImageClassificationPipeline.getInstance(
      model,
      dtype,
      (x) => {
        self.postMessage({ status: 'loading', output: x })
      }
    )

    if (type === 'load') {
      self.postMessage({
        status: 'ready',
        output: `Image classification model ${model}, dtype ${dtype} loaded`
      })
      return
    }

    if (type === 'classify') {
      if (!image) {
        self.postMessage({
          status: 'error',
          output: 'No image provided for classification'
        })
        return
      }

      try {
        // Run classification
        const output = await classifier(image, config)

        // Format predictions
        const predictions = output.map((item) => ({
          label: item.label,
          score: item.score
        }))

        self.postMessage({
          status: 'output',
          output: {
            predictions
          }
        })
      } catch (error) {
        self.postMessage({
          status: 'error',
          output:
            error.message || 'An error occurred during image classification'
        })
      }
    } else if (type === 'dispose') {
      MyImageClassificationPipeline.dispose()
      self.postMessage({ status: 'disposed' })
    }
  } catch (error) {
    self.postMessage({
      status: 'error',
      output:
        error.message || 'An error occurred during pipeline initialization'
    })
  }
})

// Handle initialization
self.postMessage({ status: 'ready' })