File size: 3,576 Bytes
046ca57 415aaef 046ca57 415aaef 046ca57 ca67cfa 046ca57 ca67cfa 046ca57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
/* eslint-disable no-restricted-globals */
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers@latest'
class MyImageClassificationPipeline {
static task = 'image-classification'
static instance = null
static modelId = null
static async getInstance(model, dtype = 'fp32', progress_callback = null) {
if (this.modelId !== model) {
// Dispose of previous pipeline if model changed
if (this.instance && this.instance.dispose) {
this.instance.dispose()
}
this.instance = null
this.modelId = null
}
if (!this.instance) {
try {
// Try WebGPU first
throw Error('onnxruntime-web failed for image-classification with transformers 3.7.1')
// this.instance = await pipeline(this.task, model, {
// dtype,
// device: 'webgpu',
// progress_callback
// })
} catch (webgpuError) {
// Fallback to WASM if WebGPU fails
if (progress_callback) {
progress_callback({
status: 'fallback',
message: 'WebGPU failed, falling back to WASM'
})
}
try {
this.instance = await pipeline(this.task, model, {
dtype,
device: 'wasm',
progress_callback
})
} catch (wasmError) {
throw new Error(
`Both WebGPU and WASM failed. WebGPU error: ${webgpuError.message}. WASM error: ${wasmError.message}`
)
}
}
this.modelId = model
}
return this.instance
}
static dispose() {
if (this.instance && this.instance.dispose) {
this.instance.dispose()
}
this.instance = null
this.modelId = null
}
}
// Listen for messages from the main thread
self.addEventListener('message', async (event) => {
try {
const { type, image, model, dtype, config } = event.data
if (!model) {
self.postMessage({
status: 'error',
output: 'No model provided'
})
return
}
// Get the pipeline instance
const classifier = await MyImageClassificationPipeline.getInstance(
model,
dtype,
(x) => {
self.postMessage({ status: 'loading', output: x })
}
)
if (type === 'load') {
self.postMessage({
status: 'ready',
output: `Image classification model ${model}, dtype ${dtype} loaded`
})
return
}
if (type === 'classify') {
if (!image) {
self.postMessage({
status: 'error',
output: 'No image provided for classification'
})
return
}
try {
// Run classification
const output = await classifier(image, config)
// Format predictions
const predictions = output.map((item) => ({
label: item.label,
score: item.score
}))
self.postMessage({
status: 'output',
output: {
predictions
}
})
} catch (error) {
self.postMessage({
status: 'error',
output:
error.message || 'An error occurred during image classification'
})
}
} else if (type === 'dispose') {
MyImageClassificationPipeline.dispose()
self.postMessage({ status: 'disposed' })
}
} catch (error) {
self.postMessage({
status: 'error',
output:
error.message || 'An error occurred during pipeline initialization'
})
}
})
// Handle initialization
self.postMessage({ status: 'ready' })
|