File size: 4,188 Bytes
22f8eb7
415aaef
22f8eb7
 
 
 
 
 
 
 
415aaef
 
 
 
 
 
 
 
22f8eb7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
/* eslint-disable no-restricted-globals */
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers@latest'

class MyFeatureExtractionPipeline {
  static task = 'feature-extraction'
  static instance = null

  static async getInstance(model, dtype = 'fp32', progress_callback = null) {
    try {
      // Try WebGPU first
      throw Error('onnxruntime-web failed for feature-extraction with transformers 3.7.1')

      // this.instance = await pipeline(this.task, model, {
      //   dtype,
      //   device: 'webgpu',
      //   progress_callback,
      // })
      // return this.instance
    } catch (webgpuError) {
      // Fallback to WASM if WebGPU fails
      if (progress_callback) {
        progress_callback({
          status: 'fallback',
          message: 'WebGPU failed, falling back to WASM'
        })
      }
      try {
        this.instance = await pipeline(this.task, model, {
          dtype,
          device: 'wasm',
          progress_callback
        })
        return this.instance
      } catch (wasmError) {
        throw new Error(
          `Both WebGPU and WASM failed. WebGPU error: ${webgpuError.message}. WASM error: ${wasmError.message}`
        )
      }
    }
  }
}

// Listen for messages from the main thread
self.addEventListener('message', async (event) => {
  try {
    const { type, model, dtype, texts, config } = event.data

    if (!model) {
      self.postMessage({
        status: 'error',
        output: 'No model provided'
      })
      return
    }

    // Get the pipeline instance
    const extractor = await MyFeatureExtractionPipeline.getInstance(
      model,
      dtype,
      (x) => {
        self.postMessage({ status: 'loading', output: x })
      }
    )

    if (type === 'load') {
      self.postMessage({
        status: 'ready',
        output: `Feature extraction model ${model}, dtype ${dtype} loaded`
      })
      return
    }

    if (type === 'extract') {
      if (!texts || !Array.isArray(texts) || texts.length === 0) {
        self.postMessage({
          status: 'error',
          output: 'No texts provided for feature extraction'
        })
        return
      }

      const embeddings = []

      for (let i = 0; i < texts.length; i++) {
        const text = texts[i]
        try {
          const output = await extractor(text, config)

          // Convert tensor to array and get the embedding
          let embedding
          if (output && typeof output.tolist === 'function') {
            embedding = output.tolist()
          } else if (Array.isArray(output)) {
            embedding = output
          } else if (output && output.data) {
            embedding = Array.from(output.data)
          } else {
            throw new Error('Unexpected output format from feature extraction')
          }

          // If the embedding is 2D (batch dimension), take the first element
          if (Array.isArray(embedding[0])) {
            embedding = embedding[0]
          }

          embeddings.push({
            text: text,
            embedding: embedding,
            index: i
          })

          // Send progress update
          self.postMessage({
            status: 'progress',
            output: {
              completed: i + 1,
              total: texts.length,
              currentText: text,
              embedding: embedding
            }
          })
        } catch (error) {
          embeddings.push({
            text: text,
            embedding: null,
            error: error.message,
            index: i
          })

          self.postMessage({
            status: 'progress',
            output: {
              completed: i + 1,
              total: texts.length,
              currentText: text,
              error: error.message
            }
          })
        }
      }

      self.postMessage({
        status: 'output',
        output: {
          embeddings: embeddings,
          completed: true
        }
      })

      self.postMessage({ status: 'ready' })
    }
  } catch (error) {
    self.postMessage({
      status: 'error',
      output: error.message || 'An error occurred during feature extraction'
    })
  }
})