File size: 1,555 Bytes
e7ba29d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
/* eslint-disable no-restricted-globals */
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.6.3';
class MyTextClassificationPipeline {
static task = 'text-classification'
static instance = null
static async getInstance(model, progress_callback = null) {
this.instance = pipeline(this.task, model, {
progress_callback
})
return this.instance
}
}
// Listen for messages from the main thread
self.addEventListener('message', async (event) => {
const { type, model, text } = event.data // Destructure 'type'
if (!model) {
self.postMessage({
status: 'error',
output: 'No model provided'
})
return
}
// Retrieve the pipeline. This will download the model if not already cached.
const classifier = await MyTextClassificationPipeline.getInstance(
model,
(x) => {
self.postMessage({ status: 'progress', output: x })
}
)
if (type === 'load') {
self.postMessage({ status: 'ready' })
return
}
if (type === 'classify') {
if (!text) {
self.postMessage({ status: 'complete' }) // Nothing to process
return
}
const split = text.split('\n')
for (const line of split) {
if (line.trim()) {
const output = await classifier(line)
self.postMessage({
status: 'output',
output: {
sequence: line,
labels: [output[0].label],
scores: [output[0].score]
}
})
}
}
self.postMessage({ status: 'complete' })
}
})
|