File size: 16,202 Bytes
948b11c
 
 
 
 
 
 
9283c8b
948b11c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9283c8b
948b11c
 
 
 
 
 
9283c8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948b11c
 
 
9283c8b
 
 
 
948b11c
9283c8b
 
 
948b11c
9283c8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948b11c
 
 
 
 
 
 
 
 
 
 
 
9283c8b
948b11c
9283c8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948b11c
 
9283c8b
 
 
 
 
 
 
 
 
 
 
 
948b11c
 
9283c8b
948b11c
 
 
 
 
 
9283c8b
948b11c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9283c8b
948b11c
 
 
 
 
 
 
9283c8b
 
 
 
 
 
 
 
 
 
 
 
948b11c
 
9283c8b
 
 
 
 
 
948b11c
 
 
 
9283c8b
 
 
948b11c
9283c8b
 
 
948b11c
 
 
 
 
 
9283c8b
948b11c
 
 
 
 
 
9283c8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948b11c
 
9283c8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948b11c
 
 
 
 
 
 
 
 
 
 
 
 
 
9283c8b
948b11c
9283c8b
948b11c
 
 
 
 
 
 
 
 
9283c8b
 
 
 
948b11c
 
 
 
9283c8b
 
 
 
 
 
 
 
948b11c
 
 
 
9283c8b
 
948b11c
9283c8b
 
948b11c
 
 
 
9283c8b
 
948b11c
 
 
 
 
 
 
 
 
 
 
 
9283c8b
948b11c
 
 
 
9283c8b
 
948b11c
9283c8b
948b11c
 
 
 
 
 
 
 
9283c8b
 
948b11c
 
 
 
 
 
 
 
 
 
9283c8b
948b11c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9283c8b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
# Building a React application

In this tutorial, we'll be building a simple React application that performs multilingual translation using Transformers.js! The final product will look something like this:

![Demo](https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/react-translator-demo.gif)

Useful links:

- [Demo site](https://huggingface.co/spaces/Xenova/react-translator)
- [Source code](https://github.com/huggingface/transformers.js-examples/tree/main/react-translator)

## Prerequisites

- [Node.js](https://nodejs.org/en/) version 18+
- [npm](https://www.npmjs.com/) version 9+

## Step 1: Initialise the project

For this tutorial, we will use [Vite](https://vitejs.dev/) to initialise our project. Vite is a build tool that allows us to quickly set up a React application with minimal configuration. Run the following command in your terminal:

```bash
npm create vite@latest react-translator -- --template react
```

If prompted to install `create-vite`, type <kbd>y</kbd> and press <kbd>Enter</kbd>.

Next, enter the project directory and install the necessary development dependencies:

```bash
cd react-translator
npm install
```

To test that our application is working, we can run the following command:

```bash
npm run dev
```

Visiting the URL shown in the terminal (e.g., [http://localhost:5173/](http://localhost:5173/)) should show the default "React + Vite" landing page.
You can stop the development server by pressing <kbd>Ctrl</kbd> + <kbd>C</kbd> in the terminal.

## Step 2: Install and configure Transformers.js

Now we get to the fun part: adding machine learning to our application! First, install Transformers.js from [NPM](https://www.npmjs.com/package/@huggingface/transformers) with the following command:

```bash
npm install @huggingface/transformers
```

For this application, we will use the [Xenova/nllb-200-distilled-600M](https://huggingface.co/Xenova/nllb-200-distilled-600M) model, which can perform multilingual translation among 200 languages. Before we start, there are 2 things we need to take note of:

1. ML inference can be quite computationally intensive, so it's better to load and run the models in a separate thread from the main (UI) thread.
2. Since the model is quite large (>1 GB), we don't want to download it until the user clicks the "Translate" button.

We can achieve both of these goals by using a [Web Worker](https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers) and some [React hooks](https://react.dev/reference/react).

1. Create a file called `worker.js` in the `src` directory. This script will do all the heavy-lifing for us, including loading and running of the translation pipeline. To ensure the model is only loaded once, we will create the `MyTranslationPipeline` class which use the [singleton pattern](https://en.wikipedia.org/wiki/Singleton_pattern) to lazily create a single instance of the pipeline when `getInstance` is first called, and use this pipeline for all subsequent calls:

   ```javascript
   import { pipeline, TextStreamer } from '@huggingface/transformers';

   class MyTranslationPipeline {
     static task = 'translation';
     static model = 'Xenova/nllb-200-distilled-600M';
     static instance = null;

     static async getInstance(progress_callback = null) {
       this.instance ??= pipeline(this.task, this.model, { progress_callback });
       return this.instance;
     }
   }
   ```

2. Modify `App.jsx` in the `src` directory. This file is automatically created when initializing our React project, and will contain some boilerplate code. Inside the `App` function, let's create the web worker and store a reference to it using the `useRef` hook:

   ```jsx
   // Remember to import the relevant hooks
   import { useEffect, useRef, useState } from 'react'
   import './App.css'

   function App() {
     // Create a reference to the worker object.
     const worker = useRef(null);

     // We use the `useEffect` hook to setup the worker as soon as the `App` component is mounted.
     useEffect(() => {
       // Create the worker if it does not yet exist.
       worker.current ??= new Worker(new URL('./worker.js', import.meta.url), {
           type: 'module'
       });

       // Create a callback function for messages from the worker thread.
       const onMessageReceived = (e) => {
         // TODO: Will fill in later
       };

       // Attach the callback function as an event listener.
       worker.current.addEventListener('message', onMessageReceived);

       // Define a cleanup function for when the component is unmounted.
       return () => worker.current.removeEventListener('message', onMessageReceived);
     });

     return (
       // TODO: Rest of our app goes here...
     )
   }

   export default App

   ```

## Step 3: Design the user interface

<Tip>

We recommend starting the development server again with `npm run dev`
(if not already running) so that you can see your changes in real-time.

</Tip>

First, let's define our components. Create a folder called `components` in the `src` directory, and create the following files:

1. `LanguageSelector.jsx`: This component will allow the user to select the input and output languages. Check out the full list of languages [here](https://github.com/huggingface/transformers.js-examples/tree/main/react-translator/src/components/LanguageSelector.jsx).

   ```jsx
   const LANGUAGES = {
     "Acehnese (Arabic script)": "ace_Arab",
     "Acehnese (Latin script)": "ace_Latn",
     "Afrikaans": "afr_Latn",
     ...
     "Zulu": "zul_Latn",
   }

   export default function LanguageSelector({ type, onChange, defaultLanguage }) {
     return (
       <div className='language-selector'>
         <label>{type}: </label>
         <select onChange={onChange} defaultValue={defaultLanguage}>
           {Object.entries(LANGUAGES).map(([key, value]) => {
             return <option key={key} value={value}>{key}</option>
           })}
         </select>
       </div>
     )
   }
   ```

2. `Progress.jsx`: This component will display the progress for downloading each model file.
   ```jsx
   export default function Progress({ text, percentage }) {
     percentage = percentage ?? 0;
     return (
       <div className="progress-container">
         <div className="progress-bar" style={{ width: `${percentage}%` }}>
           {text} ({`${percentage.toFixed(2)}%`})
         </div>
       </div>
     );
   }
   ```

We can now use these components in `App.jsx` by adding these imports to the top of the file:

```jsx
import LanguageSelector from './components/LanguageSelector';
import Progress from './components/Progress';
```

Let's also add some state variables to keep track of a few things in our application, like model loading, languages, input text, and output text. Add the following code to the beginning of the `App` function in `src/App.jsx`:

```jsx
function App() {
  // Model loading
  const [ready, setReady] = useState(null);
  const [disabled, setDisabled] = useState(false);
  const [progressItems, setProgressItems] = useState([]);

  // Inputs and outputs
  const [input, setInput] = useState('I love walking my dog.');
  const [sourceLanguage, setSourceLanguage] = useState('eng_Latn');
  const [targetLanguage, setTargetLanguage] = useState('fra_Latn');
  const [output, setOutput] = useState('');

  // rest of the code...
}
```

Next, we can add our custom components to the main `App` component. We will also add two `textarea` elements for input and output text, and a `button` to trigger the translation. Modify the `return` statement to look like this:

```jsx
return (
  <>
    <h1>Transformers.js</h1>
    <h2>ML-powered multilingual translation in React!</h2>

    <div className="container">
      <div className="language-container">
        <LanguageSelector
          type={'Source'}
          defaultLanguage={'eng_Latn'}
          onChange={(x) => setSourceLanguage(x.target.value)}
        />
        <LanguageSelector
          type={'Target'}
          defaultLanguage={'fra_Latn'}
          onChange={(x) => setTargetLanguage(x.target.value)}
        />
      </div>

      <div className="textbox-container">
        <textarea
          value={input}
          rows={3}
          onChange={(e) => setInput(e.target.value)}
        ></textarea>
        <textarea value={output} rows={3} readOnly></textarea>
      </div>
    </div>

    <button disabled={disabled} onClick={translate}>
      Translate
    </button>

    <div className="progress-bars-container">
      {ready === false && <label>Loading models... (only run once)</label>}
      {progressItems.map((data) => (
        <div key={data.file}>
          <Progress text={data.file} percentage={data.progress} />
        </div>
      ))}
    </div>
  </>
);
```

Don't worry about the `translate` function for now. We will define it in the next section.

Finally, we can add some CSS to make our app look a little nicer. Modify the following files in the `src` directory:

1. `index.css`:
   <details>
   <summary>View code</summary>

   ```css
   :root {
     font-family: Inter, system-ui, Avenir, Helvetica, Arial, sans-serif;
     line-height: 1.5;
     font-weight: 400;
     color: #213547;
     background-color: #ffffff;

     font-synthesis: none;
     text-rendering: optimizeLegibility;
     -webkit-font-smoothing: antialiased;
     -moz-osx-font-smoothing: grayscale;
     -webkit-text-size-adjust: 100%;
   }

   body {
     margin: 0;
     display: flex;
     place-items: center;
     min-width: 320px;
     min-height: 100vh;
   }

   h1 {
     font-size: 3.2em;
     line-height: 1;
   }

   h1,
   h2 {
     margin: 8px;
   }

   select {
     padding: 0.3em;
     cursor: pointer;
   }

   textarea {
     padding: 0.6em;
   }

   button {
     padding: 0.6em 1.2em;
     cursor: pointer;
     font-weight: 500;
   }

   button[disabled] {
     cursor: not-allowed;
   }

   select,
   textarea,
   button {
     border-radius: 8px;
     border: 1px solid transparent;
     font-size: 1em;
     font-family: inherit;
     background-color: #f9f9f9;
     transition: border-color 0.25s;
   }

   select:hover,
   textarea:hover,
   button:not([disabled]):hover {
     border-color: #646cff;
   }

   select:focus,
   select:focus-visible,
   textarea:focus,
   textarea:focus-visible,
   button:focus,
   button:focus-visible {
     outline: 4px auto -webkit-focus-ring-color;
   }
   ```

   </details>

1. `App.css`
   <details>
   <summary>View code</summary>

   ```css
   #root {
     max-width: 1280px;
     margin: 0 auto;
     padding: 2rem;
     text-align: center;
   }

   .language-container {
     display: flex;
     gap: 20px;
   }

   .textbox-container {
     display: flex;
     justify-content: center;
     gap: 20px;
     width: 800px;
   }

   .textbox-container > textarea,
   .language-selector {
     width: 50%;
   }

   .language-selector > select {
     width: 150px;
   }

   .progress-container {
     position: relative;
     font-size: 14px;
     color: white;
     background-color: #e9ecef;
     border: solid 1px;
     border-radius: 8px;
     text-align: left;
     overflow: hidden;
   }

   .progress-bar {
     padding: 0 4px;
     z-index: 0;
     top: 0;
     width: 1%;
     overflow: hidden;
     background-color: #007bff;
     white-space: nowrap;
   }

   .progress-text {
     z-index: 2;
   }

   .selector-container {
     display: flex;
     gap: 20px;
   }

   .progress-bars-container {
     padding: 8px;
     height: 140px;
   }

   .container {
     margin: 25px;
     display: flex;
     flex-direction: column;
     gap: 10px;
   }
   ```

   </details>

## Step 4: Connecting everything together

Now that we have a basic user interface set up, we can finally connect everything together.

First, let's define the `translate` function, which will be called when the user clicks the `Translate` button. This sends a message (containing the input text, source language, and target language) to the worker thread for processing. We will also disable the button so the user doesn't click it multiple times. Add the following code just before the `return` statement in the `App` function:

```jsx
const translate = () => {
  setDisabled(true);
  setOutput('');
  worker.current.postMessage({
    text: input,
    src_lang: sourceLanguage,
    tgt_lang: targetLanguage
  });
};
```

Now, let's add an event listener in `src/worker.js` to listen for messages from the main thread. We will send back messages (e.g., for model loading progress and text streaming) to the main thread with `self.postMessage`.

```javascript
// Listen for messages from the main thread
self.addEventListener('message', async (event) => {
  // Retrieve the translation pipeline. When called for the first time,
  // this will load the pipeline and save it for future use.
  const translator = await MyTranslationPipeline.getInstance((x) => {
    // We also add a progress callback to the pipeline so that we can
    // track model loading.
    self.postMessage(x);
  });

  // Capture partial output as it streams from the pipeline
  const streamer = new TextStreamer(translator.tokenizer, {
    skip_prompt: true,
    skip_special_tokens: true,
    callback_function: function (text) {
      self.postMessage({
        status: 'update',
        output: text
      });
    }
  });

  // Actually perform the translation
  const output = await translator(event.data.text, {
    tgt_lang: event.data.tgt_lang,
    src_lang: event.data.src_lang,

    // Allows for partial output to be captured
    streamer
  });

  // Send the output back to the main thread
  self.postMessage({
    status: 'complete',
    output
  });
});
```

Finally, let's fill in our `onMessageReceived` function in `src/App.jsx`, which will update the application state in response to messages from the worker thread. Add the following code inside the `useEffect` hook we defined earlier:

```jsx
const onMessageReceived = (e) => {
  switch (e.data.status) {
    case 'initiate':
      // Model file start load: add a new progress item to the list.
      setReady(false);
      setProgressItems((prev) => [...prev, e.data]);
      break;

    case 'progress':
      // Model file progress: update one of the progress items.
      setProgressItems((prev) =>
        prev.map((item) => {
          if (item.file === e.data.file) {
            return { ...item, progress: e.data.progress };
          }
          return item;
        })
      );
      break;

    case 'done':
      // Model file loaded: remove the progress item from the list.
      setProgressItems((prev) =>
        prev.filter((item) => item.file !== e.data.file)
      );
      break;

    case 'ready':
      // Pipeline ready: the worker is ready to accept messages.
      setReady(true);
      break;

    case 'update':
      // Generation update: update the output text.
      setOutput((o) => o + e.data.output);
      break;

    case 'complete':
      // Generation complete: re-enable the "Translate" button
      setDisabled(false);
      break;
  }
};
```

You can now run the application with `npm run dev` and perform multilingual translation directly in your browser!

## (Optional) Step 5: Build and deploy

To build your application, simply run `npm run build`. This will bundle your application and output the static files to the `dist` folder.

For this demo, we will deploy our application as a static [Hugging Face Space](https://huggingface.co/docs/hub/spaces), but you can deploy it anywhere you like! If you haven't already, you can create a free Hugging Face account [here](https://huggingface.co/join).

1. Visit [https://huggingface.co/new-space](https://huggingface.co/new-space) and fill in the form. Remember to select "Static" as the space type.
2. Go to "Files" &rarr; "Add file" &rarr; "Upload files". Drag the `index.html` file and `public/` folder from the `dist` folder into the upload box and click "Upload". After they have uploaded, scroll down to the button and click "Commit changes to main".

**That's it!** Your application should now be live at `https://huggingface.co/spaces/<your-username>/<your-space-name>`!