File size: 3,472 Bytes
2f35054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/* eslint-disable no-restricted-globals */
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.6.3'

class MyTextGenerationPipeline {
  static task = 'text-generation'
  static instance = null
  static currentGeneration = null

  static async getInstance(model, dtype = 'fp32', progress_callback = null) {
    this.instance = pipeline(this.task, model, {
      dtype,
      device: 'webgpu',
      progress_callback
    })
    return this.instance
  }

  static stopGeneration() {
    if (this.currentGeneration) {
      this.currentGeneration.abort()
      this.currentGeneration = null
    }
  }
}

// Listen for messages from the main thread
self.addEventListener('message', async (event) => {
  try {
    const {
      type,
      model,
      dtype,
      messages,
      prompt,
      hasChatTemplate,
      temperature,
      max_new_tokens,
      top_p,
      top_k,
      do_sample,
      stop_words
    } = event.data

    if (type === 'stop') {
      MyTextGenerationPipeline.stopGeneration()
      self.postMessage({ status: 'ready' })
      return
    }

    if (!model) {
      self.postMessage({
        status: 'error',
        output: 'No model provided'
      })
      return
    }

    // Retrieve the pipeline. This will download the model if not already cached.
    const generator = await MyTextGenerationPipeline.getInstance(
      model,
      dtype,
      (x) => {
        self.postMessage({ status: 'loading', output: x })
      }
    )

    if (type === 'load') {
      self.postMessage({
        status: 'ready',
        output: `Model ${model}, dtype ${dtype} loaded`
      })
      return
    }

    if (type === 'generate') {
      let inputText = ''

      if (hasChatTemplate && messages && messages.length > 0) {
        inputText = messages
      } else if (!hasChatTemplate && prompt) {
        inputText = prompt
      } else {
        self.postMessage({ status: 'ready' })
        return
      }

      const options = {
        max_new_tokens: max_new_tokens || 100,
        temperature: temperature || 0.7,
        do_sample: do_sample !== false,
        ...(top_p && { top_p }),
        ...(top_k && { top_k }),
        ...(stop_words && stop_words.length > 0 && { stop_words })
      }

      // Create an AbortController for this generation
      const abortController = new AbortController()
      MyTextGenerationPipeline.currentGeneration = abortController

      try {
        const output = await generator(inputText, {
          ...options,
          signal: abortController.signal
        })

        if (hasChatTemplate) {
          // For chat mode, extract only the assistant's response
          self.postMessage({
            status: 'output',
            output: output[0].generated_text.slice(-1)[0]
          })
        } else {
          self.postMessage({
            status: 'output',
            output: {
              role: 'assistant',
              content: output[0].generated_text
            }
          })
        }

        self.postMessage({ status: 'ready' })
      } catch (error) {
        if (error.name === 'AbortError') {
          self.postMessage({ status: 'ready' })
        } else {
          throw error
        }
      } finally {
        MyTextGenerationPipeline.currentGeneration = null
      }
    }
  } catch (error) {
    self.postMessage({
      status: 'error',
      output: error.message || 'An error occurred during text generation'
    })
  }
})