File size: 5,814 Bytes
f3b30b4 0c10cf2 ad5cef3 2656c1e 85a4687 9283c8b 85a4687 9283c8b 85a4687 9283c8b 85a4687 9283c8b ad5cef3 85a4687 08476ef 96812c9 f3b30b4 0c10cf2 f3b30b4 0c10cf2 f3b30b4 59a1fe9 85a4687 4d810fa 96812c9 e7ba29d 2656c1e e7ba29d 4d810fa 2656c1e 85a4687 0c10cf2 e7ba29d 85a4687 96812c9 85a4687 ad5cef3 f3b30b4 08476ef bd915ca 85a4687 bd915ca f3b30b4 bd915ca 08476ef bd915ca f3b30b4 bd915ca 85a4687 bd915ca 85a4687 08476ef bd915ca 85a4687 9283c8b 85a4687 08476ef 85a4687 daa5539 85a4687 96812c9 85a4687 ad5cef3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import { useState, useCallback, useEffect } from 'react'
import { TextClassificationWorkerInput, WorkerMessage } from '../types'
import { useModel } from '../contexts/ModelContext'
const PLACEHOLDER_TEXTS: string[] = [
'I absolutely love this product! It exceeded all my expectations.',
"This is the worst purchase I've ever made. Complete waste of money.",
'The service was okay, nothing special but not terrible either.',
'Amazing quality and fast delivery. Highly recommended!',
"I'm not sure how I feel about this. It's decent but could be better.",
'Terrible customer service. They were rude and unhelpful.',
"Great value for money. I'm very satisfied with my purchase.",
'The product arrived damaged and the return process was a nightmare.',
'Pretty good overall. A few minor issues but mostly positive experience.',
'Outstanding! This company really knows how to treat their customers.'
].sort(() => Math.random() - 0.5)
function TextClassification() {
const [text, setText] = useState<string>(PLACEHOLDER_TEXTS.join('\n'))
const [numberExamples, setNumberExamples] = useState(PLACEHOLDER_TEXTS.length)
const [results, setResults] = useState<any[]>([])
const {
activeWorker,
status,
setStatus,
modelInfo,
hasBeenLoaded,
selectedQuantization
} = useModel()
useEffect(() => {
if (modelInfo?.widgetData) {
const examples = modelInfo.widgetData.map((e: any) => e.text)
if (examples.length > 0) {
setText(examples.join('\n'))
}
}
}, [modelInfo])
useEffect(() => {
setNumberExamples(text.split('\n').length)
}, [text])
const classify = useCallback(() => {
if (!modelInfo || !activeWorker) {
console.error('Model info or worker is not available')
return
}
setResults([]) // Clear previous results
const message: TextClassificationWorkerInput = {
type: 'classify',
text,
model: modelInfo.id,
dtype: selectedQuantization ?? 'fp32'
}
activeWorker.postMessage(message)
}, [text, modelInfo, activeWorker, selectedQuantization, setResults])
// Handle worker messages
useEffect(() => {
if (!activeWorker) return
const onMessageReceived = (e: MessageEvent<WorkerMessage>) => {
const status = e.data.status
if (status === 'output') {
setStatus('output')
const result = e.data.output!
setResults((prev: any[]) => [...prev, result])
}
}
activeWorker.addEventListener('message', onMessageReceived)
return () => activeWorker.removeEventListener('message', onMessageReceived)
}, [activeWorker, setStatus])
const busy: boolean = status !== 'ready'
const handleClear = (): void => {
setResults([])
}
return (
<div className="flex flex-col h-[60vh] max-h-[100vh] w-full p-4">
<h1 className="text-2xl font-bold mb-4 flex-shrink-0">
Text Classification
</h1>
<div className="flex flex-col lg:flex-row gap-4 flex-1 min-h-0">
{/* Input Section */}
<div className="flex flex-col w-full lg:w-1/2 min-h-0">
<label className="text-lg font-medium mb-2 flex-shrink-0">
Input Text ({numberExamples} examples):
</label>
<div className="flex flex-col flex-1 min-h-0">
<textarea
className="border border-gray-300 rounded p-3 flex-1 resize-none min-h-[200px]"
value={text}
onChange={(e) => setText(e.target.value)}
placeholder="Enter text to classify (one per line)..."
/>
<div className="flex gap-2 mt-4 flex-shrink-0">
<button
className="flex-1 py-2 px-4 bg-blue-500 hover:bg-blue-600 rounded text-white font-medium disabled:opacity-50 disabled:cursor-not-allowed transition-colors"
disabled={busy}
onClick={classify}
>
{hasBeenLoaded
? !busy
? 'Classify Text'
: 'Processing...'
: 'Load model first'}
</button>
<button
className="py-2 px-4 bg-gray-500 hover:bg-gray-600 rounded text-white font-medium transition-colors"
onClick={handleClear}
>
Clear Results
</button>
</div>
</div>
</div>
{/* Results Section */}
<div className="flex flex-col w-full lg:w-1/2 min-h-0">
<label className="text-lg font-medium mb-2 flex-shrink-0">
Classification Results ({results.length}):
</label>
<div className="border border-gray-300 rounded p-3 flex-1 overflow-y-auto min-h-[200px]">
{results.length === 0 ? (
<div className="text-gray-500 text-center py-8">
No results yet. Click "Classify Text" to analyze your input.
</div>
) : (
<div className="space-y-3">
{results.map((result, index) => (
<div key={index} className="p-3 rounded border-2">
<div className="flex justify-between items-start mb-2">
<span className="font-semibold text-sm">
{result.labels[0]}
</span>
<span className="text-sm font-mono">
{(result.scores[0] * 100).toFixed(1)}%
</span>
</div>
<div className="text-sm text-gray-700">
{result.sequence}
</div>
</div>
))}
</div>
)}
</div>
</div>
</div>
</div>
)
}
export default TextClassification
|