Vitors commited on
Commit
937f457
·
verified ·
1 Parent(s): 9d9466a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -60
app.py CHANGED
@@ -1,64 +1,35 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
+
4
+ # Carregando os dois modelos de geração de texto
5
+ modelo_1 = pipeline("text-generation", model="gpt2")
6
+ modelo_2 = pipeline("text-generation", model="distilgpt2")
7
+
8
+ # Função avaliadora simples: escolhe a resposta mais longa
9
+ def avaliar_respostas(prompt, resposta1, resposta2):
10
+ if len(resposta1) > len(resposta2):
11
+ return f"Resposta escolhida do Modelo 1:\n\n{resposta1}"
12
+ else:
13
+ return f"Resposta escolhida do Modelo 2:\n\n{resposta2}"
14
+
15
+ # Função principal do chatbot em cascata
16
+ def chatbot_em_cascata(prompt):
17
+ # Gerar respostas com os dois modelos
18
+ resposta1 = modelo_1(prompt, max_length=50, do_sample=True)[0]['generated_text']
19
+ resposta2 = modelo_2(prompt, max_length=50, do_sample=True)[0]['generated_text']
20
+
21
+ # Avaliar e escolher a melhor resposta
22
+ melhor_resposta = avaliar_respostas(prompt, resposta1, resposta2)
23
+ return melhor_resposta
24
+
25
+ # Interface com Gradio
26
+ interface = gr.Interface(
27
+ fn=chatbot_em_cascata,
28
+ inputs=gr.Textbox(lines=2, placeholder="Digite sua pergunta aqui..."),
29
+ outputs="text",
30
+ title="Chatbot em Cascata - FMU Engenharia",
31
+ description="Dois modelos geram respostas, um avaliador escolhe a melhor."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  )
33
 
34
+ interface.launch()
35