import math import os from typing import List from typing import Optional from typing import Tuple from typing import Union import logging import numpy as np import torch from diffusers.image_processor import PipelineImageInput from diffusers.utils.torch_utils import randn_tensor from diffusers.video_processor import VideoProcessor from tqdm import tqdm from .modules.model import WanModel from .modules.t5 import T5EncoderModel from .modules.vae import WanVAE from wan.modules.posemb_layers import get_rotary_pos_embed from wan.utils.utils import calculate_new_dimensions from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler, get_sampling_sigmas, retrieve_timesteps) from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler class DTT2V: def __init__( self, config, checkpoint_dir, rank=0, model_filename = None, model_type = None, base_model_type = None, save_quantized = False, text_encoder_filename = None, quantizeTransformer = False, dtype = torch.bfloat16, VAE_dtype = torch.float32, mixed_precision_transformer = False, ): self.device = torch.device(f"cuda") self.config = config self.rank = rank self.dtype = dtype self.num_train_timesteps = config.num_train_timesteps self.param_dtype = config.param_dtype self.text_encoder = T5EncoderModel( text_len=config.text_len, dtype=config.t5_dtype, device=torch.device('cpu'), checkpoint_path=text_encoder_filename, tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), shard_fn= None) self.vae_stride = config.vae_stride self.patch_size = config.patch_size self.vae = WanVAE( vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype= VAE_dtype, device=self.device) logging.info(f"Creating WanModel from {model_filename[-1]}") from mmgp import offload # model_filename = "model.safetensors" # model_filename = "c:/temp/diffusion_pytorch_model-00001-of-00006.safetensors" base_config_file = f"configs/{base_model_type}.json" forcedConfigPath = base_config_file if len(model_filename) > 1 else None self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False , forcedConfigPath=forcedConfigPath) # offload.load_model_data(self.model, "recam.ckpt") # self.model.cpu() # dtype = torch.float16 self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype) offload.change_dtype(self.model, dtype, True) # offload.save_model(self.model, "sky_reels2_diffusion_forcing_1.3B_mbf16.safetensors", config_file_path="config.json") # offload.save_model(self.model, "sky_reels2_diffusion_forcing_720p_14B_quanto_mbf16_int8.safetensors", do_quantize= True, config_file_path="c:/temp/config _df720.json") # offload.save_model(self.model, "rtfp16_int8.safetensors", do_quantize= "config.json") self.model.eval().requires_grad_(False) if save_quantized: from wgp import save_quantized_model save_quantized_model(self.model, model_type, model_filename[0], dtype, base_config_file) self.scheduler = FlowUniPCMultistepScheduler() @property def do_classifier_free_guidance(self) -> bool: return self._guidance_scale > 1 def encode_image( self, image_start: PipelineImageInput, height: int, width: int, num_frames: int, tile_size = 0, causal_block_size = 0 ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: # prefix_video prefix_video = np.array(image_start.resize((width, height))).transpose(2, 0, 1) prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1) if prefix_video.dtype == torch.uint8: prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0 prefix_video = prefix_video.to(self.device) prefix_video = [self.vae.encode(prefix_video.unsqueeze(0), tile_size = tile_size)[0]] # [(c, f, h, w)] if prefix_video[0].shape[1] % causal_block_size != 0: truncate_len = prefix_video[0].shape[1] % causal_block_size print("the length of prefix video is truncated for the casual block size alignment.") prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len] predix_video_latent_length = prefix_video[0].shape[1] return prefix_video, predix_video_latent_length def prepare_latents( self, shape: Tuple[int], dtype: Optional[torch.dtype] = None, device: Optional[torch.device] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, ) -> torch.Tensor: return randn_tensor(shape, generator, device=device, dtype=dtype) def generate_timestep_matrix( self, num_frames, step_template, base_num_frames, ar_step=5, num_pre_ready=0, casual_block_size=1, shrink_interval_with_mask=False, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]: step_matrix, step_index = [], [] update_mask, valid_interval = [], [] num_iterations = len(step_template) + 1 num_frames_block = num_frames // casual_block_size base_num_frames_block = base_num_frames // casual_block_size if base_num_frames_block < num_frames_block: infer_step_num = len(step_template) gen_block = base_num_frames_block min_ar_step = infer_step_num / gen_block assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting" # print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block) step_template = torch.cat( [ torch.tensor([999], dtype=torch.int64, device=step_template.device), step_template.long(), torch.tensor([0], dtype=torch.int64, device=step_template.device), ] ) # to handle the counter in row works starting from 1 pre_row = torch.zeros(num_frames_block, dtype=torch.long) if num_pre_ready > 0: pre_row[: num_pre_ready // casual_block_size] = num_iterations while torch.all(pre_row >= (num_iterations - 1)) == False: new_row = torch.zeros(num_frames_block, dtype=torch.long) for i in range(num_frames_block): if i == 0 or pre_row[i - 1] >= ( num_iterations - 1 ): # the first frame or the last frame is completely denoised new_row[i] = pre_row[i] + 1 else: new_row[i] = new_row[i - 1] - ar_step new_row = new_row.clamp(0, num_iterations) update_mask.append( (new_row != pre_row) & (new_row != num_iterations) ) # False: no need to update, True: need to update step_index.append(new_row) step_matrix.append(step_template[new_row]) pre_row = new_row # for long video we split into several sequences, base_num_frames is set to the model max length (for training) terminal_flag = base_num_frames_block if shrink_interval_with_mask: idx_sequence = torch.arange(num_frames_block, dtype=torch.int64) update_mask = update_mask[0] update_mask_idx = idx_sequence[update_mask] last_update_idx = update_mask_idx[-1].item() terminal_flag = last_update_idx + 1 # for i in range(0, len(update_mask)): for curr_mask in update_mask: if terminal_flag < num_frames_block and curr_mask[terminal_flag]: terminal_flag += 1 valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag)) step_update_mask = torch.stack(update_mask, dim=0) step_index = torch.stack(step_index, dim=0) step_matrix = torch.stack(step_matrix, dim=0) if casual_block_size > 1: step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous() step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous() step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous() valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval] return step_matrix, step_index, step_update_mask, valid_interval @torch.no_grad() def generate( self, input_prompt: Union[str, List[str]], n_prompt: Union[str, List[str]] = "", image_start: PipelineImageInput = None, input_video = None, height: int = 480, width: int = 832, fit_into_canvas = True, frame_num: int = 97, sampling_steps: int = 50, shift: float = 1.0, guide_scale: float = 5.0, seed: float = 0.0, overlap_noise: int = 0, ar_step: int = 5, causal_block_size: int = 5, causal_attention: bool = True, fps: int = 24, VAE_tile_size = 0, joint_pass = False, slg_layers = None, slg_start = 0.0, slg_end = 1.0, callback = None, **bbargs ): self._interrupt = False generator = torch.Generator(device=self.device) generator.manual_seed(seed) self._guidance_scale = guide_scale frame_num = max(17, frame_num) # must match causal_block_size for value of 5 frame_num = int( round( (frame_num - 17) / 20)* 20 + 17 ) if ar_step == 0: causal_block_size = 1 causal_attention = False i2v_extra_kwrags = {} prefix_video = None predix_video_latent_length = 0 if input_video != None: _ , _ , height, width = input_video.shape elif image_start != None: image_start = image_start frame_width, frame_height = image_start.size height, width = calculate_new_dimensions(height, width, frame_height, frame_width, fit_into_canvas) image_start = np.array(image_start.resize((width, height))).transpose(2, 0, 1) latent_length = (frame_num - 1) // 4 + 1 latent_height = height // 8 latent_width = width // 8 if self._interrupt: return None prompt_embeds = self.text_encoder([input_prompt], self.device)[0] prompt_embeds = prompt_embeds.to(self.dtype).to(self.device) if self.do_classifier_free_guidance: negative_prompt_embeds = self.text_encoder([n_prompt], self.device)[0] negative_prompt_embeds = negative_prompt_embeds.to(self.dtype).to(self.device) if self._interrupt: return None self.scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift) init_timesteps = self.scheduler.timesteps fps_embeds = [fps] #* prompt_embeds[0].shape[0] fps_embeds = [0 if i == 16 else 1 for i in fps_embeds] output_video = input_video if image_start is not None or output_video is not None: # i !=0 if output_video is not None: prefix_video = output_video.to(self.device) else: causal_block_size = 1 causal_attention = False ar_step = 0 prefix_video = image_start prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1) if prefix_video.dtype == torch.uint8: prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0 prefix_video = prefix_video.to(self.device) prefix_video = self.vae.encode(prefix_video.unsqueeze(0))[0] # [(c, f, h, w)] predix_video_latent_length = prefix_video.shape[1] truncate_len = predix_video_latent_length % causal_block_size if truncate_len != 0: if truncate_len == predix_video_latent_length: causal_block_size = 1 causal_attention = False ar_step = 0 else: print("the length of prefix video is truncated for the casual block size alignment.") predix_video_latent_length -= truncate_len prefix_video = prefix_video[:, : predix_video_latent_length] base_num_frames_iter = latent_length latent_shape = [16, base_num_frames_iter, latent_height, latent_width] latents = self.prepare_latents( latent_shape, dtype=torch.float32, device=self.device, generator=generator ) if prefix_video is not None: latents[:, :predix_video_latent_length] = prefix_video.to(torch.float32) step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix( base_num_frames_iter, init_timesteps, base_num_frames_iter, ar_step, predix_video_latent_length, causal_block_size, ) sample_schedulers = [] for _ in range(base_num_frames_iter): sample_scheduler = FlowUniPCMultistepScheduler( num_train_timesteps=1000, shift=1, use_dynamic_shifting=False ) sample_scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift) sample_schedulers.append(sample_scheduler) sample_schedulers_counter = [0] * base_num_frames_iter updated_num_steps= len(step_matrix) if callback != None: callback(-1, None, True, override_num_inference_steps = updated_num_steps) if self.model.enable_cache: x_count = 2 if self.do_classifier_free_guidance else 1 self.model.previous_residual = [None] * x_count time_steps_comb = [] self.model.num_steps = updated_num_steps for i, timestep_i in enumerate(step_matrix): valid_interval_start, valid_interval_end = valid_interval[i] timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone() if overlap_noise > 0 and valid_interval_start < predix_video_latent_length: timestep[:, valid_interval_start:predix_video_latent_length] = overlap_noise time_steps_comb.append(timestep) self.model.compute_teacache_threshold(self.model.cache_start_step, time_steps_comb, self.model.teacache_multiplier) del time_steps_comb from mmgp import offload freqs = get_rotary_pos_embed(latents.shape[1 :], enable_RIFLEx= False) kwrags = { "freqs" :freqs, "fps" : fps_embeds, "causal_block_size" : causal_block_size, "causal_attention" : causal_attention, "callback" : callback, "pipeline" : self, } kwrags.update(i2v_extra_kwrags) for i, timestep_i in enumerate(tqdm(step_matrix)): kwrags["slg_layers"] = slg_layers if int(slg_start * updated_num_steps) <= i < int(slg_end * updated_num_steps) else None offload.set_step_no_for_lora(self.model, i) update_mask_i = step_update_mask[i] valid_interval_start, valid_interval_end = valid_interval[i] timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone() latent_model_input = latents[:, valid_interval_start:valid_interval_end, :, :].clone() if overlap_noise > 0 and valid_interval_start < predix_video_latent_length: noise_factor = 0.001 * overlap_noise timestep_for_noised_condition = overlap_noise latent_model_input[:, valid_interval_start:predix_video_latent_length] = ( latent_model_input[:, valid_interval_start:predix_video_latent_length] * (1.0 - noise_factor) + torch.randn_like( latent_model_input[:, valid_interval_start:predix_video_latent_length] ) * noise_factor ) timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition kwrags.update({ "t" : timestep, "current_step" : i, }) # with torch.autocast(device_type="cuda"): if True: if not self.do_classifier_free_guidance: noise_pred = self.model( x=[latent_model_input], context=[prompt_embeds], **kwrags, )[0] if self._interrupt: return None noise_pred= noise_pred.to(torch.float32) else: if joint_pass: noise_pred_cond, noise_pred_uncond = self.model( x=[latent_model_input, latent_model_input], context= [prompt_embeds, negative_prompt_embeds], **kwrags, ) if self._interrupt: return None else: noise_pred_cond = self.model( x=[latent_model_input], x_id=0, context=[prompt_embeds], **kwrags, )[0] if self._interrupt: return None noise_pred_uncond = self.model( x=[latent_model_input], x_id=1, context=[negative_prompt_embeds], **kwrags, )[0] if self._interrupt: return None noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond) del noise_pred_cond, noise_pred_uncond for idx in range(valid_interval_start, valid_interval_end): if update_mask_i[idx].item(): latents[:, idx] = sample_schedulers[idx].step( noise_pred[:, idx - valid_interval_start], timestep_i[idx], latents[:, idx], return_dict=False, generator=generator, )[0] sample_schedulers_counter[idx] += 1 if callback is not None: callback(i, latents.squeeze(0), False) x0 = latents.unsqueeze(0) videos = [self.vae.decode(x0, tile_size= VAE_tile_size)[0]] output_video = videos[0].clamp(-1, 1).cpu() # c, f, h, w return output_video