|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy
|
|
import json
|
|
import os, io
|
|
from typing import Dict, List, Optional, Tuple, Union
|
|
import numpy as np
|
|
import torch
|
|
|
|
|
|
def get_tracks_inference(tracks, height, width, quant_multi: Optional[int] = 8, **kwargs):
|
|
if isinstance(tracks, str):
|
|
tracks = torch.load(tracks)
|
|
|
|
tracks_np = unzip_to_array(tracks)
|
|
|
|
tracks = process_tracks(
|
|
tracks_np, (width, height), quant_multi=quant_multi, **kwargs
|
|
)
|
|
|
|
return tracks
|
|
|
|
|
|
def unzip_to_array(
|
|
data: bytes, key: Union[str, List[str]] = "array"
|
|
) -> Union[np.ndarray, Dict[str, np.ndarray]]:
|
|
bytes_io = io.BytesIO(data)
|
|
|
|
if isinstance(key, str):
|
|
|
|
with np.load(bytes_io) as data:
|
|
return data[key]
|
|
else:
|
|
get = {}
|
|
with np.load(bytes_io) as data:
|
|
for k in key:
|
|
get[k] = data[k]
|
|
return get
|
|
|
|
|
|
def process_tracks(tracks_np: np.ndarray, frame_size: Tuple[int, int], quant_multi: int = 8, **kwargs):
|
|
|
|
|
|
|
|
tracks = torch.from_numpy(tracks_np).float() / quant_multi
|
|
if tracks.shape[1] == 121:
|
|
tracks = torch.permute(tracks, (1, 0, 2, 3))
|
|
tracks, visibles = tracks[..., :2], tracks[..., 2:3]
|
|
short_edge = min(*frame_size)
|
|
|
|
tracks = tracks - torch.tensor([*frame_size]).type_as(tracks) / 2
|
|
tracks = tracks / short_edge * 2
|
|
|
|
visibles = visibles * 2 - 1
|
|
|
|
trange = torch.linspace(-1, 1, tracks.shape[0]).view(-1, 1, 1, 1).expand(*visibles.shape)
|
|
|
|
out_ = torch.cat([trange, tracks, visibles], dim=-1).view(121, -1, 4)
|
|
out_0 = out_[:1]
|
|
out_l = out_[1:]
|
|
out_l = torch.repeat_interleave(out_l, 2, dim=0)[1::3]
|
|
return torch.cat([out_0, out_l], dim=0)
|
|
|