|
"""
|
|
Copyright (c) 2024 by SageAttention team.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
"""
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from sageattention.triton.quant_per_block import per_block_int8 as per_block_int8_triton
|
|
from sageattention.triton.quant_per_block_varlen import per_block_int8 as per_block_int8_varlen_triton
|
|
from sageattention.triton.attn_qk_int8_per_block import forward as attn_false
|
|
from sageattention.triton.attn_qk_int8_per_block_causal import forward as attn_true
|
|
from sageattention.triton.attn_qk_int8_block_varlen import forward as attn_false_varlen
|
|
from sageattention.triton.attn_qk_int8_per_block_causal_varlen import forward as attn_true_varlen
|
|
|
|
from sageattention.triton.quant_per_thread import per_thread_int8 as per_thread_int8_triton
|
|
|
|
try:
|
|
from sageattention import _qattn_sm80
|
|
SM80_ENABLED = True
|
|
except:
|
|
SM80_ENABLED = False
|
|
|
|
try:
|
|
from sageattention import _qattn_sm89
|
|
SM89_ENABLED = True
|
|
except:
|
|
SM89_ENABLED = False
|
|
|
|
try:
|
|
from sageattention import _qattn_sm90
|
|
SM90_ENABLED = True
|
|
except:
|
|
SM90_ENABLED = False
|
|
|
|
from sageattention.quant import per_block_int8 as per_block_int8_cuda
|
|
from sageattention.quant import per_warp_int8 as per_warp_int8_cuda
|
|
from sageattention.quant import sub_mean
|
|
from sageattention.quant import per_channel_fp8
|
|
|
|
from typing import Any, List, Literal, Optional, Tuple, Union
|
|
import warnings
|
|
import os
|
|
|
|
def is_sage2_supported():
|
|
device_count = torch.cuda.device_count()
|
|
for i in range(device_count):
|
|
major, minor = torch.cuda.get_device_capability(i)
|
|
if major < 8:
|
|
return False
|
|
return True
|
|
|
|
def get_cuda_arch_versions():
|
|
cuda_archs = []
|
|
for i in range(torch.cuda.device_count()):
|
|
major, minor = torch.cuda.get_device_capability(i)
|
|
cuda_archs.append(f"sm{major}{minor}")
|
|
return cuda_archs
|
|
|
|
def sageattn(
|
|
qkv_list,
|
|
tensor_layout: str = "HND",
|
|
is_causal: bool = False,
|
|
sm_scale: Optional[float] = None,
|
|
return_lse: bool = False,
|
|
**kwargs: Any,
|
|
):
|
|
"""
|
|
Automatically selects the appropriate implementation of the SageAttention kernel based on the GPU compute capability.
|
|
|
|
Parameters
|
|
----------
|
|
q : torch.Tensor
|
|
The query tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``.
|
|
|
|
k : torch.Tensor
|
|
The key tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``.
|
|
|
|
v : torch.Tensor
|
|
The value tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``.
|
|
|
|
tensor_layout : str
|
|
The tensor layout, either "HND" or "NHD".
|
|
Default: "HND".
|
|
|
|
is_causal : bool
|
|
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len.
|
|
Default: False.
|
|
|
|
sm_scale : Optional[float]
|
|
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``.
|
|
|
|
return_lse : bool
|
|
Whether to return the log sum of the exponentiated attention weights. Used for cases like Ring Attention.
|
|
Default: False.
|
|
|
|
Returns
|
|
-------
|
|
torch.Tensor
|
|
The output tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``.
|
|
|
|
torch.Tensor
|
|
The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor).
|
|
Shape: ``[batch_size, num_qo_heads, qo_len]``.
|
|
Only returned if `return_lse` is True.
|
|
|
|
Note
|
|
----
|
|
- ``num_qo_heads`` must be divisible by ``num_kv_heads``.
|
|
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16`` or ``torch.bfloat16``
|
|
- All tensors must be on the same cuda device.
|
|
"""
|
|
|
|
arch = get_cuda_arch_versions()[qkv_list[0].device.index]
|
|
if arch == "sm80":
|
|
return sageattn_qk_int8_pv_fp16_cuda(qkv_list, tensor_layout=tensor_layout, is_causal=is_causal, sm_scale=sm_scale, return_lse=return_lse, pv_accum_dtype="fp32")
|
|
elif arch == "sm86":
|
|
return sageattn_qk_int8_pv_fp16_triton(qkv_list, tensor_layout=tensor_layout, is_causal=is_causal, sm_scale=sm_scale, return_lse=return_lse)
|
|
elif arch == "sm89":
|
|
return sageattn_qk_int8_pv_fp8_cuda(qkv_list, tensor_layout=tensor_layout, is_causal=is_causal, sm_scale=sm_scale, return_lse=return_lse, pv_accum_dtype="fp32+fp32")
|
|
elif arch == "sm90":
|
|
return sageattn_qk_int8_pv_fp8_cuda_sm90(qkv_list, tensor_layout=tensor_layout, is_causal=is_causal, sm_scale=sm_scale, return_lse=return_lse, pv_accum_dtype="fp32+fp32")
|
|
elif arch == "sm120":
|
|
return sageattn_qk_int8_pv_fp8_cuda(qkv_list, tensor_layout=tensor_layout, is_causal=is_causal, qk_quant_gran="per_warp", sm_scale=sm_scale, return_lse=return_lse, pv_accum_dtype="fp32", smooth_v= True)
|
|
else:
|
|
raise ValueError(f"Unsupported CUDA architecture: {arch}")
|
|
|
|
@torch.compiler.disable
|
|
def sageattn_qk_int8_pv_fp16_triton(
|
|
qkv_list,
|
|
|
|
|
|
|
|
tensor_layout: str = "HND",
|
|
quantization_backend: str = "triton",
|
|
is_causal: bool =False,
|
|
sm_scale: Optional[float] = None,
|
|
smooth_k: bool = True,
|
|
return_lse: bool = False,
|
|
**kwargs: Any,
|
|
) -> torch.Tensor:
|
|
"""
|
|
SageAttention with per-block INT8 quantization for Q and K, FP16 PV with FP16 accumulation, implemented using Triton.
|
|
The FP16 accumulator is added to a FP32 buffer immediately after each iteration.
|
|
|
|
Parameters
|
|
----------
|
|
q : torch.Tensor
|
|
The query tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``.
|
|
|
|
k : torch.Tensor
|
|
The key tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``.
|
|
|
|
v : torch.Tensor
|
|
The value tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``.
|
|
|
|
tensor_layout : str
|
|
The tensor layout, either "HND" or "NHD".
|
|
Default: "HND".
|
|
|
|
quantization_backend : str
|
|
The quantization backend, either "triton" or "cuda".
|
|
"cuda" backend offers better performance due to kernel fusion.
|
|
|
|
is_causal : bool
|
|
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len.
|
|
Default: False.
|
|
|
|
sm_scale : Optional[float]
|
|
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``.
|
|
|
|
smooth_k : bool
|
|
Whether to smooth the key tensor by subtracting the mean along the sequence dimension.
|
|
Default: True.
|
|
|
|
return_lse : bool
|
|
Whether to return the log sum of the exponentiated attention weights. Used for cases like Ring Attention.
|
|
Default: False.
|
|
|
|
Returns
|
|
-------
|
|
torch.Tensor
|
|
The output tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``.
|
|
|
|
torch.Tensor
|
|
The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor).
|
|
Shape: ``[batch_size, num_qo_heads, qo_len]``.
|
|
Only returned if `return_lse` is True.
|
|
|
|
Note
|
|
----
|
|
- ``num_qo_heads`` must be divisible by ``num_kv_heads``.
|
|
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16``, ``torch.bfloat16`` or ``torch.float32``.
|
|
- All tensors must be on the same cuda device.
|
|
- `smooth_k` will introduce slight overhead but will improve the accuracy under most circumstances.
|
|
"""
|
|
q, k, v = qkv_list
|
|
qkv_list.clear()
|
|
dtype = q.dtype
|
|
assert q.is_cuda, "Input tensors must be on cuda."
|
|
assert dtype in [torch.float16, torch.bfloat16], "Input tensors must be in dtype of torch.float16 or torch.bfloat16"
|
|
assert q.device == k.device == v.device, "All tensors must be on the same device."
|
|
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same dtype."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.cuda.set_device(v.device)
|
|
|
|
head_dim_og = q.size(-1)
|
|
|
|
if head_dim_og < 64:
|
|
q = torch.nn.functional.pad(q, (0, 64 - head_dim_og))
|
|
k = torch.nn.functional.pad(k, (0, 64 - head_dim_og))
|
|
v = torch.nn.functional.pad(v, (0, 64 - head_dim_og))
|
|
elif head_dim_og > 64 and head_dim_og < 128:
|
|
q = torch.nn.functional.pad(q, (0, 128 - head_dim_og))
|
|
k = torch.nn.functional.pad(k, (0, 128 - head_dim_og))
|
|
v = torch.nn.functional.pad(v, (0, 128 - head_dim_og))
|
|
elif head_dim_og > 128:
|
|
raise ValueError(f"Unsupported head_dim: {head_dim_og}")
|
|
|
|
|
|
assert q.stride(-1) == 1 and k.stride(-1) == 1 and v.stride(-1) == 1, "Last dim of qkv must be contiguous."
|
|
|
|
seq_dim = 1 if tensor_layout == "NHD" else 2
|
|
|
|
if smooth_k:
|
|
km = k.mean(dim=seq_dim, keepdim=True)
|
|
if return_lse:
|
|
if tensor_layout == "NHD":
|
|
lse_correction = torch.matmul(q.transpose(1, 2), km.transpose(1, 2).transpose(2, 3)).squeeze(-1).to(torch.float32)
|
|
else:
|
|
lse_correction = torch.matmul(q, km.transpose(2, 3)).squeeze(-1).to(torch.float32)
|
|
else:
|
|
km = None
|
|
|
|
if dtype == torch.bfloat16 or dtype == torch.float32:
|
|
v = v.to(torch.float16)
|
|
|
|
if sm_scale is None:
|
|
sm_scale = 1.0 / (head_dim_og ** 0.5)
|
|
|
|
if quantization_backend == "triton":
|
|
q_int8, q_scale, k_int8, k_scale = per_block_int8_triton(q, k, km=km, sm_scale=sm_scale, tensor_layout=tensor_layout)
|
|
elif quantization_backend == "cuda":
|
|
q_int8, q_scale, k_int8, k_scale = per_block_int8_cuda(q, k, km=km, sm_scale=sm_scale, tensor_layout=tensor_layout)
|
|
else:
|
|
raise ValueError(f"Unsupported quantization backend: {quantization_backend}")
|
|
del q,k, km
|
|
|
|
if is_causal:
|
|
o, lse = attn_true(q_int8, k_int8, v, q_scale, k_scale, tensor_layout=tensor_layout, output_dtype=dtype, return_lse=return_lse)
|
|
else:
|
|
o, lse = attn_false(q_int8, k_int8, v, q_scale, k_scale, tensor_layout=tensor_layout, output_dtype=dtype, return_lse=return_lse)
|
|
|
|
o = o[..., :head_dim_og]
|
|
|
|
if return_lse:
|
|
return o, lse / 1.44269504 + lse_correction * sm_scale if smooth_k else lse / 1.44269504
|
|
else:
|
|
return o
|
|
|
|
@torch.compiler.disable
|
|
def sageattn_varlen(
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
cu_seqlens_q: torch.Tensor,
|
|
cu_seqlens_k: torch.Tensor,
|
|
max_seqlen_q: int,
|
|
max_seqlen_k: int,
|
|
is_causal: bool = False,
|
|
sm_scale: Optional[float] = None,
|
|
smooth_k: bool = True,
|
|
**kwargs: Any,
|
|
) -> torch.Tensor:
|
|
"""
|
|
|
|
Parameters
|
|
----------
|
|
q : torch.Tensor
|
|
The query tensor, shape: ``[cu_seqlens_q[-1], num_qo_heads, head_dim]``.
|
|
|
|
k : torch.Tensor
|
|
The key tensor, shape: ``[cu_seqlens_k[-1], num_kv_heads, head_dim]``.
|
|
|
|
v : torch.Tensor
|
|
The value tensor, shape: ``[cu_seqlens_k[-1], num_kv_heads, head_dim]``.
|
|
|
|
cu_seqlens_q : torch.Tensor
|
|
The cumulative sequence lengths for the query sequences in the batch, used to index into `q`.
|
|
Shape: ``[batch_size + 1]``, where each entry represents the cumulative length of sequences up to that batch index.
|
|
|
|
cu_seqlens_k : torch.Tensor
|
|
The cumulative sequence lengths for the key and value sequences in the batch, used to index into `k` and `v`.
|
|
Shape: ``[batch_size + 1]``, where each entry represents the cumulative length of sequences up to that batch index.
|
|
|
|
max_seqlen_q : int
|
|
The maximum sequence length for the query tensor in the batch.
|
|
|
|
max_seqlen_k : int
|
|
The maximum sequence length for the key and value tensors in the batch.
|
|
|
|
is_causal : bool
|
|
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len for each sequence.
|
|
Default: False.
|
|
|
|
sm_scale : Optional[float]
|
|
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``.
|
|
|
|
smooth_k : bool
|
|
Whether to smooth the key tensor by subtracting the mean along the sequence dimension.
|
|
Default: True.
|
|
|
|
Returns
|
|
-------
|
|
torch.Tensor
|
|
The output tensor, shape: ``[cu_seqlens_q[-1], num_qo_heads, head_dim]``.
|
|
|
|
Note
|
|
----
|
|
- ``num_qo_heads`` must be divisible by ``num_kv_heads``.
|
|
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16``, ``torch.bfloat16`` or ``torch.float32``.
|
|
- The tensors `cu_seqlens_q` and `cu_seqlens_k` must have the dtype ``torch.int32`` or ``torch.int64``.
|
|
- All tensors must be on the same cuda device.
|
|
- `smooth_k` will introduce slight overhead but will improve the accuracy under most circumstances.
|
|
"""
|
|
|
|
dtype = q.dtype
|
|
assert q.is_cuda, "Input tensors must be on cuda."
|
|
assert dtype in [torch.float16, torch.bfloat16], "Input tensors must be in dtype of torch.float16 or torch.bfloat16"
|
|
assert q.device == k.device == v.device, "All tensors must be on the same device."
|
|
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same dtype."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.cuda.set_device(v.device)
|
|
|
|
head_dim_og = q.size(-1)
|
|
|
|
if head_dim_og < 64:
|
|
q = torch.nn.functional.pad(q, (0, 64 - head_dim_og))
|
|
k = torch.nn.functional.pad(k, (0, 64 - head_dim_og))
|
|
v = torch.nn.functional.pad(v, (0, 64 - head_dim_og))
|
|
elif head_dim_og > 64 and head_dim_og < 128:
|
|
q = torch.nn.functional.pad(q, (0, 128 - head_dim_og))
|
|
k = torch.nn.functional.pad(k, (0, 128 - head_dim_og))
|
|
v = torch.nn.functional.pad(v, (0, 128 - head_dim_og))
|
|
elif head_dim_og > 128:
|
|
raise ValueError(f"Unsupported head_dim: {head_dim_og}")
|
|
|
|
assert q.stride(-1) == 1 and k.stride(-1) == 1 and v.stride(-1) == 1, "Last dim of qkv must be contiguous."
|
|
assert cu_seqlens_q.is_contiguous() and cu_seqlens_k.is_contiguous(), "cu_seqlens_q and cu_seqlens_k must be contiguous."
|
|
|
|
if dtype == torch.bfloat16 or dtype == torch.float32:
|
|
v = v.to(torch.float16)
|
|
|
|
if smooth_k:
|
|
km = k.mean(dim=0, keepdim=True)
|
|
k = k - km
|
|
|
|
if sm_scale is None:
|
|
sm_scale = 1.0 / (head_dim_og ** 0.5)
|
|
|
|
q_int8, q_scale, k_int8, k_scale, cu_seqlens_q_scale, cu_seqlens_k_scale = per_block_int8_varlen_triton(q, k, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, sm_scale=sm_scale)
|
|
|
|
if is_causal:
|
|
o = attn_true_varlen(q_int8, k_int8, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, q_scale, k_scale, cu_seqlens_q_scale, cu_seqlens_k_scale, output_dtype=dtype)
|
|
else:
|
|
o = attn_false_varlen(q_int8, k_int8, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, q_scale, k_scale, cu_seqlens_q_scale, cu_seqlens_k_scale, output_dtype=dtype)
|
|
|
|
o = o[..., :head_dim_og]
|
|
|
|
return o
|
|
|
|
@torch.compiler.disable
|
|
def sageattn_qk_int8_pv_fp16_cuda(
|
|
qkv_list,
|
|
|
|
|
|
|
|
tensor_layout: str = "HND",
|
|
is_causal: bool = False,
|
|
qk_quant_gran: str = "per_thread",
|
|
sm_scale: Optional[float] = None,
|
|
pv_accum_dtype: str = "fp32",
|
|
smooth_k: bool = True,
|
|
smooth_v: bool = False,
|
|
return_lse: bool = False,
|
|
**kwargs: Any,
|
|
) -> torch.Tensor:
|
|
"""
|
|
SageAttention with INT8 quantization for Q and K, FP16 PV with FP16/FP32 accumulation, implemented using CUDA.
|
|
|
|
Parameters
|
|
----------
|
|
q : torch.Tensor
|
|
The query tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``.
|
|
|
|
k : torch.Tensor
|
|
The key tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``.
|
|
|
|
v : torch.Tensor
|
|
The value tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``.
|
|
|
|
tensor_layout : str
|
|
The tensor layout, either "HND" or "NHD".
|
|
Default: "HND".
|
|
|
|
is_causal : bool
|
|
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len.
|
|
Default: False.
|
|
|
|
qk_quant_gran : str
|
|
The granularity of quantization for Q and K, either "per_warp" or "per_thread".
|
|
Default: "per_thread".
|
|
|
|
sm_scale : Optional[float]
|
|
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``.
|
|
|
|
pv_accum_dtype : str
|
|
The dtype of the accumulation of the product of the value tensor and the attention weights, either "fp16", "fp16+fp32" or "fp32".
|
|
- "fp16": PV accumulation is done in fully in FP16. This is the fastest option but may lead to numerical instability. `smooth_v` option will increase the accuracy in cases when the value tensor has a large bias (like in CogVideoX-2b).
|
|
- "fp32": PV accumulation is done in FP32. This is the most accurate option but may be slower than "fp16" due to CUDA core overhead.
|
|
- "fp16+fp32": PV accumulation is done in FP16, but added to a FP32 buffer every few iterations. This offers a balance between speed and accuracy.
|
|
Default: "fp32".
|
|
|
|
smooth_k : bool
|
|
Whether to smooth the key tensor by subtracting the mean along the sequence dimension.
|
|
Default: True.
|
|
|
|
smooth_v : bool
|
|
Whether to smooth the value tensor by subtracting the mean along the sequence dimension.
|
|
smooth_v will be ignored if pv_accum_dtype is "fp32" or "fp16+fp32".
|
|
Default: False.
|
|
|
|
return_lse : bool
|
|
Whether to return the log sum of the exponentiated attention weights. Used for cases like Ring Attention.
|
|
Default: False.
|
|
|
|
Returns
|
|
-------
|
|
torch.Tensor
|
|
The output tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``.
|
|
|
|
torch.Tensor
|
|
The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor).
|
|
Shape: ``[batch_size, num_qo_heads, qo_len]``.
|
|
Only returned if `return_lse` is True.
|
|
|
|
Note
|
|
----
|
|
- ``num_qo_heads`` must be divisible by ``num_kv_heads``.
|
|
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16`` or ``torch.bfloat16``
|
|
- All tensors must be on the same cuda device.
|
|
- `smooth_k` will introduce slight overhead but will improve the accuracy under most circumstances.
|
|
"""
|
|
q,k,v = qkv_list
|
|
qkv_list.clear()
|
|
dtype = q.dtype
|
|
assert SM80_ENABLED, "SM80 kernel is not available. make sure you GPUs with compute capability 8.0 or higher."
|
|
assert q.is_cuda, "Input tensors must be on cuda."
|
|
assert dtype in [torch.float16, torch.bfloat16], "Input tensors must be in dtype of torch.float16 or torch.bfloat16"
|
|
assert qk_quant_gran in ["per_warp", "per_thread"], "qk_quant_gran must be either 'per_warp' or 'per_thread'."
|
|
assert q.device == k.device == v.device, "All tensors must be on the same device."
|
|
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same dtype."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.cuda.set_device(v.device)
|
|
|
|
_tensor_layout = 0 if tensor_layout == "NHD" else 1
|
|
_is_caual = 1 if is_causal else 0
|
|
_qk_quant_gran = 3 if qk_quant_gran == "per_thread" else 2
|
|
_return_lse = 1 if return_lse else 0
|
|
|
|
head_dim_og = q.size(-1)
|
|
|
|
if head_dim_og < 64:
|
|
q = torch.nn.functional.pad(q, (0, 64 - head_dim_og))
|
|
k = torch.nn.functional.pad(k, (0, 64 - head_dim_og))
|
|
v = torch.nn.functional.pad(v, (0, 64 - head_dim_og))
|
|
elif head_dim_og > 64 and head_dim_og < 128:
|
|
q = torch.nn.functional.pad(q, (0, 128 - head_dim_og))
|
|
k = torch.nn.functional.pad(k, (0, 128 - head_dim_og))
|
|
v = torch.nn.functional.pad(v, (0, 128 - head_dim_og))
|
|
elif head_dim_og > 128:
|
|
raise ValueError(f"Unsupported head_dim: {head_dim_og}")
|
|
|
|
|
|
assert q.stride(-1) == 1 and k.stride(-1) == 1 and v.stride(-1) == 1, "Last dim of qkv must be contiguous."
|
|
|
|
if sm_scale is None:
|
|
sm_scale = head_dim_og**-0.5
|
|
|
|
seq_dim = 1 if _tensor_layout == 0 else 2
|
|
|
|
if smooth_k:
|
|
km = k.mean(dim=seq_dim, keepdim=True)
|
|
if return_lse:
|
|
if tensor_layout == "NHD":
|
|
lse_correction = torch.matmul(q.transpose(1, 2), km.transpose(1, 2).transpose(2, 3)).squeeze(-1).to(torch.float32)
|
|
else:
|
|
lse_correction = torch.matmul(q, km.transpose(2, 3)).squeeze(-1).to(torch.float32)
|
|
else:
|
|
km = None
|
|
|
|
if qk_quant_gran == "per_warp":
|
|
q_int8, q_scale, k_int8, k_scale = per_warp_int8_cuda(q, k, km, tensor_layout=tensor_layout, BLKQ=128, WARPQ=(16 if (q.size(-1) == 128 and pv_accum_dtype == "fp16+fp32") else 32), BLKK=64)
|
|
elif qk_quant_gran == "per_thread":
|
|
q_int8, q_scale, k_int8, k_scale = per_thread_int8_triton(q, k, km, tensor_layout=tensor_layout, BLKQ=128, WARPQ=(16 if (q.size(-1) == 128 and pv_accum_dtype == "fp16+fp32") else 32), BLKK=64, WARPK=64)
|
|
|
|
q_size = q.size()
|
|
q_device = q.device
|
|
del q,k, km
|
|
o = torch.empty(q_size, dtype=dtype, device=q_device)
|
|
|
|
if pv_accum_dtype in ["fp32", "fp16+fp32"] and smooth_v:
|
|
warnings.warn(f"pv_accum_dtype is {pv_accum_dtype}, smooth_v will be ignored.")
|
|
smooth_v = False
|
|
|
|
if pv_accum_dtype == 'fp32':
|
|
v = v.to(torch.float16)
|
|
lse = _qattn_sm80.qk_int8_sv_f16_accum_f32_attn(q_int8, k_int8, v, o, q_scale, k_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse)
|
|
elif pv_accum_dtype == "fp16":
|
|
if smooth_v:
|
|
smoothed_v, vm = sub_mean(v, tensor_layout=tensor_layout)
|
|
del v
|
|
lse = _qattn_sm80.qk_int8_sv_f16_accum_f16_fuse_v_mean_attn(q_int8, k_int8, smoothed_v, o, q_scale, k_scale, vm, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse)
|
|
else:
|
|
v = v.to(torch.float16)
|
|
lse = _qattn_sm80.qk_int8_sv_f16_accum_f16_attn(q_int8, k_int8, v, o, q_scale, k_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse)
|
|
elif pv_accum_dtype == "fp16+fp32":
|
|
v = v.to(torch.float16)
|
|
lse = _qattn_sm80.qk_int8_sv_f16_accum_f16_attn_inst_buf(q_int8, k_int8, v, o, q_scale, k_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse)
|
|
else:
|
|
raise ValueError(f"Unsupported pv_accum_dtype: {pv_accum_dtype}")
|
|
|
|
o = o[..., :head_dim_og]
|
|
|
|
if return_lse:
|
|
return o, lse / 1.44269504 + lse_correction * sm_scale if smooth_k else lse / 1.44269504
|
|
else:
|
|
return o
|
|
|
|
@torch.compiler.disable
|
|
def sageattn_qk_int8_pv_fp8_cuda(
|
|
qkv_list,
|
|
tensor_layout: str = "HND",
|
|
is_causal: bool = False,
|
|
qk_quant_gran: str = "per_thread",
|
|
sm_scale: Optional[float] = None,
|
|
pv_accum_dtype: str = "fp32+fp32",
|
|
smooth_k: bool = True,
|
|
smooth_v: bool = False,
|
|
return_lse: bool = False,
|
|
**kwargs: Any,
|
|
) -> torch.Tensor:
|
|
"""
|
|
SageAttention with INT8 quantization for Q and K, FP8 PV with FP32 accumulation, implemented using CUDA.
|
|
|
|
Parameters
|
|
----------
|
|
q : torch.Tensor
|
|
The query tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``.
|
|
|
|
k : torch.Tensor
|
|
The key tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``.
|
|
|
|
v : torch.Tensor
|
|
The value tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``.
|
|
|
|
tensor_layout : str
|
|
The tensor layout, either "HND" or "NHD".
|
|
Default: "HND".
|
|
|
|
is_causal : bool
|
|
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len.
|
|
Default: False.
|
|
|
|
qk_quant_gran : str
|
|
The granularity of quantization for Q and K, either "per_warp" or "per_thread".
|
|
Default: "per_thread".
|
|
|
|
sm_scale : Optional[float]
|
|
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``.
|
|
|
|
pv_accum_dtype : str
|
|
The dtype of the accumulation of the product of the value tensor and the attention weights, either "fp32" or "fp32+fp32".
|
|
- "fp32": PV accumulation is done in fully in FP32. However, due to the hardware issue, there are only 22 valid bits in the FP32 accumulator.
|
|
- "fp32+fp32": PV accumulation is done in FP32 (actually FP22), but added to a FP32 buffer every few iterations. This offers a balance between speed and accuracy.
|
|
Default: "fp32+fp32".
|
|
|
|
smooth_k : bool
|
|
Whether to smooth the key tensor by subtracting the mean along the sequence dimension.
|
|
Default: True.
|
|
|
|
smooth_v : bool
|
|
Whether to smooth the value tensor by subtracting the mean along the sequence dimension.
|
|
smooth_v will be ignored if pv_accum_dtype is "fp32+fp32".
|
|
Default: False.
|
|
|
|
return_lse : bool
|
|
Whether to return the log sum of the exponentiated attention weights. Used for cases like Ring Attention.
|
|
Default: False.
|
|
|
|
Returns
|
|
-------
|
|
torch.Tensor
|
|
The output tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``.
|
|
|
|
torch.Tensor
|
|
The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor).
|
|
Shape: ``[batch_size, num_qo_heads, qo_len]``.
|
|
Only returned if `return_lse` is True.
|
|
|
|
Note
|
|
----
|
|
- ``num_qo_heads`` must be divisible by ``num_kv_heads``.
|
|
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16`` or ``torch.bfloat16``
|
|
- All tensors must be on the same cuda device.
|
|
- `smooth_k` will introduce slight overhead but will improve the accuracy under most circumstances.
|
|
"""
|
|
q, k, v = qkv_list
|
|
qkv_list.clear()
|
|
|
|
dtype = q.dtype
|
|
assert SM89_ENABLED, "SM89 kernel is not available. Make sure you GPUs with compute capability 8.9."
|
|
assert q.is_cuda, "Input tensors must be on cuda."
|
|
assert dtype in [torch.float16, torch.bfloat16], "Input tensors must be in dtype of torch.float16 or torch.bfloat16"
|
|
assert qk_quant_gran in ["per_warp", "per_thread"], "qk_quant_gran must be either 'per_warp' or 'per_thread'."
|
|
assert q.device == k.device == v.device, "All tensors must be on the same device."
|
|
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same dtype."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.cuda.set_device(v.device)
|
|
|
|
_tensor_layout = 0 if tensor_layout == "NHD" else 1
|
|
_is_caual = 1 if is_causal else 0
|
|
_qk_quant_gran = 3 if qk_quant_gran == "per_thread" else 2
|
|
_return_lse = 1 if return_lse else 0
|
|
|
|
head_dim_og = q.size(-1)
|
|
|
|
if head_dim_og < 64:
|
|
q = torch.nn.functional.pad(q, (0, 64 - head_dim_og))
|
|
k = torch.nn.functional.pad(k, (0, 64 - head_dim_og))
|
|
v = torch.nn.functional.pad(v, (0, 64 - head_dim_og))
|
|
elif head_dim_og > 64 and head_dim_og < 128:
|
|
q = torch.nn.functional.pad(q, (0, 128 - head_dim_og))
|
|
k = torch.nn.functional.pad(k, (0, 128 - head_dim_og))
|
|
v = torch.nn.functional.pad(v, (0, 128 - head_dim_og))
|
|
elif head_dim_og > 128:
|
|
raise ValueError(f"Unsupported head_dim: {head_dim_og}")
|
|
|
|
|
|
assert q.stride(-1) == 1 and k.stride(-1) == 1 and v.stride(-1) == 1, "Last dim of qkv must be contiguous."
|
|
|
|
if sm_scale is None:
|
|
sm_scale = head_dim_og**-0.5
|
|
|
|
seq_dim = 1 if _tensor_layout == 0 else 2
|
|
|
|
if smooth_k:
|
|
km = k.mean(dim=seq_dim, keepdim=True)
|
|
if return_lse:
|
|
if tensor_layout == "NHD":
|
|
lse_correction = torch.matmul(q.transpose(1, 2), km.transpose(1, 2).transpose(2, 3)).squeeze(-1).to(torch.float32)
|
|
else:
|
|
lse_correction = torch.matmul(q, km.transpose(2, 3)).squeeze(-1).to(torch.float32)
|
|
else:
|
|
km = None
|
|
|
|
if qk_quant_gran == "per_warp":
|
|
q_int8, q_scale, k_int8, k_scale = per_warp_int8_cuda(q, k, km, tensor_layout=tensor_layout, BLKQ=128, WARPQ=32, BLKK=64)
|
|
elif qk_quant_gran == "per_thread":
|
|
q_int8, q_scale, k_int8, k_scale = per_thread_int8_triton(q, k, km, tensor_layout=tensor_layout, BLKQ=128, WARPQ=32, BLKK=64, WARPK=64)
|
|
q_size = q.size()
|
|
q_device = q.device
|
|
del q,k,km
|
|
|
|
if pv_accum_dtype == 'fp32+fp32' and smooth_v:
|
|
warnings.warn("pv_accum_dtype is 'fp32+fp32', smooth_v will be ignored.")
|
|
smooth_v = False
|
|
|
|
v_fp8, v_scale, vm = per_channel_fp8(v, tensor_layout=tensor_layout, smooth_v=smooth_v)
|
|
del v
|
|
o = torch.empty(q_size, dtype=dtype, device=q_device)
|
|
if pv_accum_dtype == "fp32":
|
|
if smooth_v:
|
|
lse = _qattn_sm89.qk_int8_sv_f8_accum_f32_fuse_v_scale_fuse_v_mean_attn(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, vm, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse)
|
|
else:
|
|
lse = _qattn_sm89.qk_int8_sv_f8_accum_f32_fuse_v_scale_attn(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse)
|
|
elif pv_accum_dtype == "fp32+fp32":
|
|
lse = _qattn_sm89.qk_int8_sv_f8_accum_f32_fuse_v_scale_attn_inst_buf(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse)
|
|
|
|
o = o[..., :head_dim_og]
|
|
|
|
if return_lse:
|
|
return o, lse / 1.44269504 + lse_correction * sm_scale if smooth_k else lse / 1.44269504
|
|
else:
|
|
return o
|
|
|
|
|
|
@torch.compiler.disable
|
|
def sageattn_qk_int8_pv_fp8_window_cuda(
|
|
qkv_list,
|
|
|
|
|
|
|
|
tensor_layout: str = "HND",
|
|
is_causal: bool = False,
|
|
qk_quant_gran: str = "per_thread",
|
|
sm_scale: Optional[float] = None,
|
|
pv_accum_dtype: str = "fp32+fp32",
|
|
smooth_k: bool = True,
|
|
smooth_v: bool = False,
|
|
return_lse: bool = False,
|
|
window = -1,
|
|
**kwargs: Any,
|
|
) -> torch.Tensor:
|
|
"""
|
|
SageAttention with INT8 quantization for Q and K, FP8 PV with FP32 accumulation, implemented using CUDA.
|
|
|
|
Parameters
|
|
----------
|
|
q : torch.Tensor
|
|
The query tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``.
|
|
|
|
k : torch.Tensor
|
|
The key tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``.
|
|
|
|
v : torch.Tensor
|
|
The value tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``.
|
|
|
|
tensor_layout : str
|
|
The tensor layout, either "HND" or "NHD".
|
|
Default: "HND".
|
|
|
|
is_causal : bool
|
|
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len.
|
|
Default: False.
|
|
|
|
qk_quant_gran : str
|
|
The granularity of quantization for Q and K, either "per_warp" or "per_thread".
|
|
Default: "per_thread".
|
|
|
|
sm_scale : Optional[float]
|
|
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``.
|
|
|
|
pv_accum_dtype : str
|
|
The dtype of the accumulation of the product of the value tensor and the attention weights, either "fp32" or "fp32+fp32".
|
|
- "fp32": PV accumulation is done in fully in FP32. However, due to the hardware issue, there are only 22 valid bits in the FP32 accumulator.
|
|
- "fp32+fp32": PV accumulation is done in FP32 (actually FP22), but added to a FP32 buffer every few iterations. This offers a balance between speed and accuracy.
|
|
Default: "fp32+fp32".
|
|
|
|
smooth_k : bool
|
|
Whether to smooth the key tensor by subtracting the mean along the sequence dimension.
|
|
Default: True.
|
|
|
|
smooth_v : bool
|
|
Whether to smooth the value tensor by subtracting the mean along the sequence dimension.
|
|
smooth_v will be ignored if pv_accum_dtype is "fp32+fp32".
|
|
Default: False.
|
|
|
|
return_lse : bool
|
|
Whether to return the log sum of the exponentiated attention weights. Used for cases like Ring Attention.
|
|
Default: False.
|
|
|
|
Returns
|
|
-------
|
|
torch.Tensor
|
|
The output tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``.
|
|
|
|
torch.Tensor
|
|
The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor).
|
|
Shape: ``[batch_size, num_qo_heads, qo_len]``.
|
|
Only returned if `return_lse` is True.
|
|
|
|
Note
|
|
----
|
|
- ``num_qo_heads`` must be divisible by ``num_kv_heads``.
|
|
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16`` or ``torch.bfloat16``
|
|
- All tensors must be on the same cuda device.
|
|
- `smooth_k` will introduce slight overhead but will improve the accuracy under most circumstances.
|
|
"""
|
|
q,k,v = qkv_list
|
|
qkv_list.clear()
|
|
dtype = q.dtype
|
|
assert SM89_ENABLED, "SM89 kernel is not available. Make sure you GPUs with compute capability 8.9."
|
|
assert q.is_cuda, "Input tensors must be on cuda."
|
|
assert dtype in [torch.float16, torch.bfloat16], "Input tensors must be in dtype of torch.float16 or torch.bfloat16"
|
|
assert qk_quant_gran in ["per_warp", "per_thread"], "qk_quant_gran must be either 'per_warp' or 'per_thread'."
|
|
assert q.device == k.device == v.device, "All tensors must be on the same device."
|
|
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same dtype."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
torch.cuda.set_device(v.device)
|
|
|
|
_tensor_layout = 0 if tensor_layout == "NHD" else 1
|
|
_is_caual = 1 if is_causal else 0
|
|
_qk_quant_gran = 3 if qk_quant_gran == "per_thread" else 2
|
|
_return_lse = 1 if return_lse else 0
|
|
|
|
head_dim_og = q.size(-1)
|
|
|
|
if head_dim_og < 64:
|
|
q = torch.nn.functional.pad(q, (0, 64 - head_dim_og))
|
|
k = torch.nn.functional.pad(k, (0, 64 - head_dim_og))
|
|
v = torch.nn.functional.pad(v, (0, 64 - head_dim_og))
|
|
elif head_dim_og > 64 and head_dim_og < 128:
|
|
q = torch.nn.functional.pad(q, (0, 128 - head_dim_og))
|
|
k = torch.nn.functional.pad(k, (0, 128 - head_dim_og))
|
|
v = torch.nn.functional.pad(v, (0, 128 - head_dim_og))
|
|
elif head_dim_og > 128:
|
|
raise ValueError(f"Unsupported head_dim: {head_dim_og}")
|
|
|
|
|
|
assert q.stride(-1) == 1 and k.stride(-1) == 1 and v.stride(-1) == 1, "Last dim of qkv must be contiguous."
|
|
|
|
if sm_scale is None:
|
|
sm_scale = head_dim_og**-0.5
|
|
|
|
seq_dim = 1 if _tensor_layout == 0 else 2
|
|
|
|
if smooth_k:
|
|
km = k.mean(dim=seq_dim, keepdim=True)
|
|
if return_lse:
|
|
if tensor_layout == "NHD":
|
|
lse_correction = torch.matmul(q.transpose(1, 2), km.transpose(1, 2).transpose(2, 3)).squeeze(-1).to(torch.float32)
|
|
else:
|
|
lse_correction = torch.matmul(q, km.transpose(2, 3)).squeeze(-1).to(torch.float32)
|
|
else:
|
|
km = None
|
|
|
|
if qk_quant_gran == "per_warp":
|
|
q_int8, q_scale, k_int8, k_scale = per_warp_int8_cuda(q, k, km, tensor_layout=tensor_layout, BLKQ=128, WARPQ=32, BLKK=64)
|
|
elif qk_quant_gran == "per_thread":
|
|
q_int8, q_scale, k_int8, k_scale = per_thread_int8_triton(q, k, km, tensor_layout=tensor_layout, BLKQ=128, WARPQ=32, BLKK=64, WARPK=64)
|
|
|
|
q_size = q.size()
|
|
q_device = q.device
|
|
del q,k
|
|
|
|
if pv_accum_dtype == 'fp32+fp32' and smooth_v:
|
|
warnings.warn("pv_accum_dtype is 'fp32+fp32', smooth_v will be ignored.")
|
|
smooth_v = False
|
|
|
|
v_fp8, v_scale, vm = per_channel_fp8(v, tensor_layout=tensor_layout, smooth_v=smooth_v)
|
|
del v
|
|
o = torch.empty(q_size, dtype=dtype, device=q_device)
|
|
|
|
if pv_accum_dtype == "fp32":
|
|
if smooth_v:
|
|
lse = _qattn_sm89.qk_int8_sv_f8_accum_f32_fuse_v_scale_fuse_v_mean_attn(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, vm, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse, window)
|
|
else:
|
|
lse = _qattn_sm89.qk_int8_sv_f8_accum_f32_fuse_v_scale_attn(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse, window)
|
|
elif pv_accum_dtype == "fp32+fp32":
|
|
lse = _qattn_sm89.qk_int8_sv_f8_accum_f32_fuse_v_scale_attn_inst_buf(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse, window)
|
|
|
|
o = o[..., :head_dim_og]
|
|
|
|
if return_lse:
|
|
return o, lse / 1.44269504 + lse_correction * sm_scale if smooth_k else lse / 1.44269504
|
|
else:
|
|
return o
|
|
|
|
@torch.compiler.disable
|
|
def sageattn_qk_int8_pv_fp8_cuda_sm90(
|
|
qkv_list,
|
|
|
|
|
|
|
|
tensor_layout: str = "HND",
|
|
is_causal: bool = False,
|
|
qk_quant_gran: str = "per_thread",
|
|
sm_scale: Optional[float] = None,
|
|
pv_accum_dtype: str = "fp32+fp32",
|
|
smooth_k: bool = True,
|
|
return_lse: bool = False,
|
|
**kwargs: Any,
|
|
) -> torch.Tensor:
|
|
"""
|
|
SageAttention with INT8 quantization for Q and K, FP8 PV with FP32 accumulation, implemented using CUDA.
|
|
|
|
Parameters
|
|
----------
|
|
q : torch.Tensor
|
|
The query tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``.
|
|
|
|
k : torch.Tensor
|
|
The key tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``.
|
|
|
|
v : torch.Tensor
|
|
The value tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_kv_heads, kv_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, kv_len, num_kv_heads, head_dim]``.
|
|
|
|
tensor_layout : str
|
|
The tensor layout, either "HND" or "NHD".
|
|
Default: "HND".
|
|
|
|
is_causal : bool
|
|
Whether to apply causal mask to the attention matrix. Only applicable when qo_len == kv_len.
|
|
Default: False.
|
|
|
|
qk_quant_gran : str
|
|
The granularity of quantization for Q and K, either "per_warp" or "per_thread".
|
|
Default: "per_thread".
|
|
|
|
sm_scale : Optional[float]
|
|
The scale used in softmax, if not provided, will be set to ``1.0 / sqrt(head_dim)``.
|
|
|
|
pv_accum_dtype : str
|
|
The dtype of the accumulation of the product of the value tensor and the attention weights, either "fp32" or "fp32+fp32".
|
|
- "fp32": PV accumulation is done in fully in FP32. However, due to the hardware issue, there are only 22 valid bits in the FP32 accumulator.
|
|
- "fp32+fp32": PV accumulation is done in FP32 (actually FP22), but added to a FP32 buffer every few iterations. This offers a balance between speed and accuracy.
|
|
Default: "fp32+fp32".
|
|
|
|
smooth_k : bool
|
|
Whether to smooth the key tensor by subtracting the mean along the sequence dimension.
|
|
Default: True.
|
|
|
|
return_lse : bool
|
|
Whether to return the log sum of the exponentiated attention weights. Used for cases like Ring Attention.
|
|
Default: False.
|
|
|
|
Returns
|
|
-------
|
|
torch.Tensor
|
|
The output tensor. Shape:
|
|
- If `tensor_layout` is "HND": ``[batch_size, num_qo_heads, qo_len, head_dim]``.
|
|
- If `tensor_layout` is "NHD": ``[batch_size, qo_len, num_qo_heads, head_dim]``.
|
|
|
|
torch.Tensor
|
|
The logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax normalization factor).
|
|
Shape: ``[batch_size, num_qo_heads, qo_len]``.
|
|
Only returned if `return_lse` is True.
|
|
|
|
Note
|
|
----
|
|
- ``num_qo_heads`` must be divisible by ``num_kv_heads``.
|
|
- The tensors `q`, `k`, and `v` must have the dtype ``torch.float16`` or ``torch.bfloat16``
|
|
- All tensors must be on the same cuda device.
|
|
- `smooth_k` will introduce slight overhead but will improve the accuracy under most circumstances.
|
|
"""
|
|
q,k,v = qkv_list
|
|
qkv_list.clear()
|
|
dtype = q.dtype
|
|
assert SM90_ENABLED, "SM90 kernel is not available. Make sure you GPUs with compute capability 9.0."
|
|
assert q.is_cuda, "Input tensors must be on cuda."
|
|
assert dtype in [torch.float16, torch.bfloat16], "Input tensors must be in dtype of torch.float16 or torch.bfloat16"
|
|
assert qk_quant_gran in ["per_warp", "per_thread"], "qk_quant_gran must be either 'per_warp' or 'per_thread'."
|
|
assert q.device == k.device == v.device, "All tensors must be on the same device."
|
|
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same dtype."
|
|
|
|
torch.cuda.set_device(v.device)
|
|
|
|
_tensor_layout = 0 if tensor_layout == "NHD" else 1
|
|
_is_caual = 1 if is_causal else 0
|
|
_qk_quant_gran = 3 if qk_quant_gran == "per_thread" else 2
|
|
_return_lse = 1 if return_lse else 0
|
|
|
|
head_dim_og = q.size(-1)
|
|
|
|
if head_dim_og < 64:
|
|
q = torch.nn.functional.pad(q, (0, 64 - head_dim_og))
|
|
k = torch.nn.functional.pad(k, (0, 64 - head_dim_og))
|
|
v = torch.nn.functional.pad(v, (0, 64 - head_dim_og))
|
|
elif head_dim_og > 64 and head_dim_og < 128:
|
|
q = torch.nn.functional.pad(q, (0, 128 - head_dim_og))
|
|
k = torch.nn.functional.pad(k, (0, 128 - head_dim_og))
|
|
v = torch.nn.functional.pad(v, (0, 128 - head_dim_og))
|
|
elif head_dim_og > 128:
|
|
raise ValueError(f"Unsupported head_dim: {head_dim_og}")
|
|
|
|
|
|
assert q.stride(-1) == 1 and k.stride(-1) == 1 and v.stride(-1) == 1, "Last dim of qkv must be contiguous."
|
|
|
|
if sm_scale is None:
|
|
sm_scale = head_dim_og**-0.5
|
|
|
|
seq_dim = 1 if _tensor_layout == 0 else 2
|
|
|
|
if smooth_k:
|
|
km = k.mean(dim=seq_dim, keepdim=True)
|
|
if return_lse:
|
|
if tensor_layout == "NHD":
|
|
lse_correction = torch.matmul(q.transpose(1, 2), km.transpose(1, 2).transpose(2, 3)).squeeze(-1).to(torch.float32)
|
|
else:
|
|
lse_correction = torch.matmul(q, km.transpose(2, 3)).squeeze(-1).to(torch.float32)
|
|
else:
|
|
km = None
|
|
|
|
if qk_quant_gran == "per_warp":
|
|
q_int8, q_scale, k_int8, k_scale = per_warp_int8_cuda(q, k, km, tensor_layout=tensor_layout, BLKQ=64, WARPQ=16, BLKK=128)
|
|
elif qk_quant_gran == "per_thread":
|
|
q_int8, q_scale, k_int8, k_scale = per_thread_int8_triton(q, k, km, tensor_layout=tensor_layout, BLKQ=64, WARPQ=16, BLKK=128, WARPK=128)
|
|
|
|
q_size = q.size()
|
|
kv_len = k.size(seq_dim)
|
|
q_device = q.device
|
|
del q,k
|
|
|
|
|
|
|
|
|
|
v_pad_len = 128 - (kv_len % 128) if kv_len % 128 != 0 else 0
|
|
if v_pad_len > 0:
|
|
if tensor_layout == "HND":
|
|
v = torch.cat([v, torch.zeros(v.size(0), v.size(1), v_pad_len, v.size(3), dtype=v.dtype, device=v.device)], dim=2)
|
|
else:
|
|
v = torch.cat([v, torch.zeros(v.size(0), v_pad_len, v.size(2), v.size(3), dtype=v.dtype, device=v.device)], dim=1)
|
|
|
|
v_fp8, v_scale, _ = per_channel_fp8(v, tensor_layout=tensor_layout, smooth_v=False)
|
|
del v
|
|
o = torch.empty(q_size, dtype=dtype, device=q_device)
|
|
|
|
if pv_accum_dtype == "fp32":
|
|
raise NotImplementedError("Please use pv_accum_dtype='fp32+fp32' for sm90.")
|
|
lse = _qattn_sm90.qk_int8_sv_f8_accum_f32_fuse_v_scale_attn(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse)
|
|
elif pv_accum_dtype == "fp32+fp32":
|
|
lse = _qattn_sm90.qk_int8_sv_f8_accum_f32_fuse_v_scale_attn_inst_buf(q_int8, k_int8, v_fp8, o, q_scale, k_scale, v_scale, _tensor_layout, _is_caual, _qk_quant_gran, sm_scale, _return_lse)
|
|
|
|
o = o[..., :head_dim_og]
|
|
|
|
if return_lse:
|
|
return o, lse / 1.44269504 + lse_correction * sm_scale if smooth_k else lse / 1.44269504
|
|
else:
|
|
return o |