|
|
|
import gc
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
import sys
|
|
import types
|
|
from contextlib import contextmanager
|
|
from functools import partial
|
|
import json
|
|
import numpy as np
|
|
import torch
|
|
import torch.cuda.amp as amp
|
|
import torch.distributed as dist
|
|
import torchvision.transforms.functional as TF
|
|
from tqdm import tqdm
|
|
|
|
from .distributed.fsdp import shard_model
|
|
from .modules.clip import CLIPModel
|
|
from .modules.model import WanModel
|
|
from .modules.t5 import T5EncoderModel
|
|
from .modules.vae import WanVAE
|
|
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
|
|
get_sampling_sigmas, retrieve_timesteps)
|
|
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
|
from wan.modules.posemb_layers import get_rotary_pos_embed
|
|
from wan.utils.utils import resize_lanczos, calculate_new_dimensions
|
|
|
|
def optimized_scale(positive_flat, negative_flat):
|
|
|
|
|
|
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
|
|
|
|
|
|
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
|
|
|
|
|
|
st_star = dot_product / squared_norm
|
|
|
|
return st_star
|
|
|
|
|
|
|
|
class WanI2V:
|
|
|
|
def __init__(
|
|
self,
|
|
config,
|
|
checkpoint_dir,
|
|
model_filename = None,
|
|
model_type = None,
|
|
base_model_type= None,
|
|
text_encoder_filename= None,
|
|
quantizeTransformer = False,
|
|
dtype = torch.bfloat16,
|
|
VAE_dtype = torch.float32,
|
|
save_quantized = False,
|
|
mixed_precision_transformer = False
|
|
):
|
|
self.device = torch.device(f"cuda")
|
|
self.config = config
|
|
self.dtype = dtype
|
|
self.VAE_dtype = VAE_dtype
|
|
self.num_train_timesteps = config.num_train_timesteps
|
|
self.param_dtype = config.param_dtype
|
|
|
|
self.text_encoder = T5EncoderModel(
|
|
text_len=config.text_len,
|
|
dtype=config.t5_dtype,
|
|
device=torch.device('cpu'),
|
|
checkpoint_path=text_encoder_filename,
|
|
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
|
|
shard_fn=None,
|
|
)
|
|
|
|
self.vae_stride = config.vae_stride
|
|
self.patch_size = config.patch_size
|
|
self.vae = WanVAE(
|
|
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype = VAE_dtype,
|
|
device=self.device)
|
|
|
|
self.clip = CLIPModel(
|
|
dtype=config.clip_dtype,
|
|
device=self.device,
|
|
checkpoint_path=os.path.join(checkpoint_dir ,
|
|
config.clip_checkpoint),
|
|
tokenizer_path=os.path.join(checkpoint_dir , config.clip_tokenizer))
|
|
|
|
logging.info(f"Creating WanModel from {model_filename[-1]}")
|
|
from mmgp import offload
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
base_config_file = f"configs/{base_model_type}.json"
|
|
forcedConfigPath = base_config_file if len(model_filename) > 1 else None
|
|
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer and not save_quantized, writable_tensors= False, defaultConfigPath= base_config_file, forcedConfigPath= forcedConfigPath)
|
|
self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype)
|
|
offload.change_dtype(self.model, dtype, True)
|
|
|
|
|
|
|
|
|
|
|
|
self.model.eval().requires_grad_(False)
|
|
if save_quantized:
|
|
from wgp import save_quantized_model
|
|
save_quantized_model(self.model, model_type, model_filename[0], dtype, base_config_file)
|
|
|
|
|
|
self.sample_neg_prompt = config.sample_neg_prompt
|
|
|
|
def generate(self,
|
|
input_prompt,
|
|
image_start,
|
|
image_end = None,
|
|
height =720,
|
|
width = 1280,
|
|
fit_into_canvas = True,
|
|
frame_num=81,
|
|
shift=5.0,
|
|
sample_solver='unipc',
|
|
sampling_steps=40,
|
|
guide_scale=5.0,
|
|
n_prompt="",
|
|
seed=-1,
|
|
callback = None,
|
|
enable_RIFLEx = False,
|
|
VAE_tile_size= 0,
|
|
joint_pass = False,
|
|
slg_layers = None,
|
|
slg_start = 0.0,
|
|
slg_end = 1.0,
|
|
cfg_star_switch = True,
|
|
cfg_zero_step = 5,
|
|
audio_scale=None,
|
|
audio_cfg_scale=None,
|
|
audio_proj=None,
|
|
audio_context_lens=None,
|
|
model_filename = None,
|
|
**bbargs
|
|
):
|
|
r"""
|
|
Generates video frames from input image and text prompt using diffusion process.
|
|
|
|
Args:
|
|
input_prompt (`str`):
|
|
Text prompt for content generation.
|
|
image_start (PIL.Image.Image):
|
|
Input image tensor. Shape: [3, H, W]
|
|
max_area (`int`, *optional*, defaults to 720*1280):
|
|
Maximum pixel area for latent space calculation. Controls video resolution scaling
|
|
frame_num (`int`, *optional*, defaults to 81):
|
|
How many frames to sample from a video. The number should be 4n+1
|
|
shift (`float`, *optional*, defaults to 5.0):
|
|
Noise schedule shift parameter. Affects temporal dynamics
|
|
[NOTE]: If you want to generate a 480p video, it is recommended to set the shift value to 3.0.
|
|
sample_solver (`str`, *optional*, defaults to 'unipc'):
|
|
Solver used to sample the video.
|
|
sampling_steps (`int`, *optional*, defaults to 40):
|
|
Number of diffusion sampling steps. Higher values improve quality but slow generation
|
|
guide_scale (`float`, *optional*, defaults 5.0):
|
|
Classifier-free guidance scale. Controls prompt adherence vs. creativity
|
|
n_prompt (`str`, *optional*, defaults to ""):
|
|
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt`
|
|
seed (`int`, *optional*, defaults to -1):
|
|
Random seed for noise generation. If -1, use random seed
|
|
offload_model (`bool`, *optional*, defaults to True):
|
|
If True, offloads models to CPU during generation to save VRAM
|
|
|
|
Returns:
|
|
torch.Tensor:
|
|
Generated video frames tensor. Dimensions: (C, N H, W) where:
|
|
- C: Color channels (3 for RGB)
|
|
- N: Number of frames (81)
|
|
- H: Frame height (from max_area)
|
|
- W: Frame width from max_area)
|
|
"""
|
|
|
|
add_frames_for_end_image = "image2video" in model_filename or "fantasy" in model_filename
|
|
|
|
image_start = TF.to_tensor(image_start)
|
|
lat_frames = int((frame_num - 1) // self.vae_stride[0] + 1)
|
|
any_end_frame = image_end !=None
|
|
if any_end_frame:
|
|
any_end_frame = True
|
|
image_end = TF.to_tensor(image_end)
|
|
if add_frames_for_end_image:
|
|
frame_num +=1
|
|
lat_frames = int((frame_num - 2) // self.vae_stride[0] + 2)
|
|
|
|
h, w = image_start.shape[1:]
|
|
|
|
h, w = calculate_new_dimensions(height, width, h, w, fit_into_canvas)
|
|
|
|
lat_h = round(
|
|
h // self.vae_stride[1] //
|
|
self.patch_size[1] * self.patch_size[1])
|
|
lat_w = round(
|
|
w // self.vae_stride[2] //
|
|
self.patch_size[2] * self.patch_size[2])
|
|
h = lat_h * self.vae_stride[1]
|
|
w = lat_w * self.vae_stride[2]
|
|
|
|
clip_image_size = self.clip.model.image_size
|
|
img_interpolated = resize_lanczos(image_start, h, w).sub_(0.5).div_(0.5).unsqueeze(0).transpose(0,1).to(self.device)
|
|
image_start = resize_lanczos(image_start, clip_image_size, clip_image_size)
|
|
image_start = image_start.sub_(0.5).div_(0.5).to(self.device)
|
|
if image_end!= None:
|
|
img_interpolated2 = resize_lanczos(image_end, h, w).sub_(0.5).div_(0.5).unsqueeze(0).transpose(0,1).to(self.device)
|
|
image_end = resize_lanczos(image_end, clip_image_size, clip_image_size)
|
|
image_end = image_end.sub_(0.5).div_(0.5).to(self.device)
|
|
|
|
max_seq_len = lat_frames * lat_h * lat_w // ( self.patch_size[1] * self.patch_size[2])
|
|
|
|
seed = seed if seed >= 0 else random.randint(0, sys.maxsize)
|
|
seed_g = torch.Generator(device=self.device)
|
|
seed_g.manual_seed(seed)
|
|
noise = torch.randn(16, lat_frames, lat_h, lat_w, dtype=torch.float32, generator=seed_g, device=self.device)
|
|
|
|
msk = torch.ones(1, frame_num, lat_h, lat_w, device=self.device)
|
|
if any_end_frame:
|
|
msk[:, 1: -1] = 0
|
|
if add_frames_for_end_image:
|
|
msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:-1], torch.repeat_interleave(msk[:, -1:], repeats=4, dim=1) ], dim=1)
|
|
else:
|
|
msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1)
|
|
|
|
else:
|
|
msk[:, 1:] = 0
|
|
msk = torch.concat([ torch.repeat_interleave(msk[:, 0:1], repeats=4, dim=1), msk[:, 1:] ], dim=1)
|
|
msk = msk.view(1, msk.shape[1] // 4, 4, lat_h, lat_w)
|
|
msk = msk.transpose(1, 2)[0]
|
|
|
|
if n_prompt == "":
|
|
n_prompt = self.sample_neg_prompt
|
|
|
|
if self._interrupt:
|
|
return None
|
|
|
|
|
|
context = self.text_encoder([input_prompt], self.device)[0]
|
|
context_null = self.text_encoder([n_prompt], self.device)[0]
|
|
context = context.to(self.dtype)
|
|
context_null = context_null.to(self.dtype)
|
|
|
|
if self._interrupt:
|
|
return None
|
|
|
|
clip_context = self.clip.visual([image_start[:, None, :, :]])
|
|
|
|
from mmgp import offload
|
|
offload.last_offload_obj.unload_all()
|
|
if any_end_frame:
|
|
mean2 = 0
|
|
enc= torch.concat([
|
|
img_interpolated,
|
|
torch.full( (3, frame_num-2, h, w), mean2, device=self.device, dtype= self.VAE_dtype),
|
|
img_interpolated2,
|
|
], dim=1).to(self.device)
|
|
else:
|
|
enc= torch.concat([
|
|
img_interpolated,
|
|
torch.zeros(3, frame_num-1, h, w, device=self.device, dtype= self.VAE_dtype)
|
|
], dim=1).to(self.device)
|
|
image_start, image_end, img_interpolated, img_interpolated2 = None, None, None, None
|
|
|
|
lat_y = self.vae.encode([enc], VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0]
|
|
y = torch.concat([msk, lat_y])
|
|
lat_y = None
|
|
|
|
|
|
|
|
|
|
if sample_solver == 'unipc':
|
|
sample_scheduler = FlowUniPCMultistepScheduler(
|
|
num_train_timesteps=self.num_train_timesteps,
|
|
shift=1,
|
|
use_dynamic_shifting=False)
|
|
sample_scheduler.set_timesteps(
|
|
sampling_steps, device=self.device, shift=shift)
|
|
timesteps = sample_scheduler.timesteps
|
|
elif sample_solver == 'dpm++':
|
|
sample_scheduler = FlowDPMSolverMultistepScheduler(
|
|
num_train_timesteps=self.num_train_timesteps,
|
|
shift=1,
|
|
use_dynamic_shifting=False)
|
|
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift)
|
|
timesteps, _ = retrieve_timesteps(
|
|
sample_scheduler,
|
|
device=self.device,
|
|
sigmas=sampling_sigmas)
|
|
else:
|
|
raise NotImplementedError("Unsupported solver.")
|
|
|
|
|
|
latent = noise
|
|
batch_size = 1
|
|
freqs = get_rotary_pos_embed(latent.shape[1:], enable_RIFLEx= enable_RIFLEx)
|
|
|
|
kwargs = { 'clip_fea': clip_context, 'y': y, 'freqs' : freqs, 'pipeline' : self, 'callback' : callback }
|
|
|
|
if audio_proj != None:
|
|
kwargs.update({
|
|
"audio_proj": audio_proj.to(self.dtype),
|
|
"audio_context_lens": audio_context_lens,
|
|
})
|
|
|
|
if self.model.enable_cache:
|
|
self.model.previous_residual = [None] * (3 if audio_cfg_scale !=None else 2)
|
|
self.model.compute_teacache_threshold(self.model.cache_start_step, timesteps, self.model.teacache_multiplier)
|
|
|
|
|
|
if callback != None:
|
|
callback(-1, None, True)
|
|
latent = latent.to(self.device)
|
|
for i, t in enumerate(tqdm(timesteps)):
|
|
offload.set_step_no_for_lora(self.model, i)
|
|
kwargs["slg_layers"] = slg_layers if int(slg_start * sampling_steps) <= i < int(slg_end * sampling_steps) else None
|
|
latent_model_input = latent
|
|
timestep = [t]
|
|
|
|
timestep = torch.stack(timestep).to(self.device)
|
|
kwargs.update({
|
|
't' :timestep,
|
|
'current_step' :i,
|
|
})
|
|
|
|
if guide_scale == 1:
|
|
noise_pred = self.model( [latent_model_input], context=[context], audio_scale = None if audio_scale == None else [audio_scale], x_id=0, **kwargs, )[0]
|
|
if self._interrupt:
|
|
return None
|
|
elif joint_pass:
|
|
if audio_proj == None:
|
|
noise_pred_cond, noise_pred_uncond = self.model(
|
|
[latent_model_input, latent_model_input],
|
|
context=[context, context_null],
|
|
**kwargs)
|
|
else:
|
|
noise_pred_cond, noise_pred_noaudio, noise_pred_uncond = self.model(
|
|
[latent_model_input, latent_model_input, latent_model_input],
|
|
context=[context, context, context_null],
|
|
audio_scale = [audio_scale, None, None ],
|
|
**kwargs)
|
|
|
|
if self._interrupt:
|
|
return None
|
|
else:
|
|
noise_pred_cond = self.model( [latent_model_input], context=[context], audio_scale = None if audio_scale == None else [audio_scale], x_id=0, **kwargs, )[0]
|
|
if self._interrupt:
|
|
return None
|
|
|
|
if audio_proj != None:
|
|
noise_pred_noaudio = self.model(
|
|
[latent_model_input],
|
|
x_id=1,
|
|
context=[context],
|
|
**kwargs,
|
|
)[0]
|
|
if self._interrupt:
|
|
return None
|
|
|
|
noise_pred_uncond = self.model(
|
|
[latent_model_input],
|
|
x_id=1 if audio_scale == None else 2,
|
|
context=[context_null],
|
|
**kwargs,
|
|
)[0]
|
|
if self._interrupt:
|
|
return None
|
|
del latent_model_input
|
|
|
|
if guide_scale > 1:
|
|
|
|
if cfg_star_switch:
|
|
positive_flat = noise_pred_cond.view(batch_size, -1)
|
|
negative_flat = noise_pred_uncond.view(batch_size, -1)
|
|
|
|
alpha = optimized_scale(positive_flat,negative_flat)
|
|
alpha = alpha.view(batch_size, 1, 1, 1)
|
|
|
|
if (i <= cfg_zero_step):
|
|
noise_pred = noise_pred_cond*0.
|
|
else:
|
|
noise_pred_uncond *= alpha
|
|
if audio_scale == None:
|
|
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond)
|
|
else:
|
|
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_noaudio - noise_pred_uncond) + audio_cfg_scale * (noise_pred_cond - noise_pred_noaudio)
|
|
|
|
noise_pred_uncond, noise_pred_noaudio = None, None
|
|
temp_x0 = sample_scheduler.step(
|
|
noise_pred.unsqueeze(0),
|
|
t,
|
|
latent.unsqueeze(0),
|
|
return_dict=False,
|
|
generator=seed_g)[0]
|
|
latent = temp_x0.squeeze(0)
|
|
del temp_x0
|
|
del timestep
|
|
|
|
if callback is not None:
|
|
callback(i, latent, False)
|
|
|
|
x0 = [latent]
|
|
video = self.vae.decode(x0, VAE_tile_size, any_end_frame= any_end_frame and add_frames_for_end_image)[0]
|
|
|
|
if any_end_frame and add_frames_for_end_image:
|
|
|
|
video = video[:, :-1]
|
|
|
|
del noise, latent
|
|
del sample_scheduler
|
|
|
|
return video
|
|
|