|
import torch
|
|
import torch.nn.functional as F
|
|
from math import exp
|
|
import numpy as np
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
def gaussian(window_size, sigma):
|
|
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
|
|
return gauss/gauss.sum()
|
|
|
|
|
|
def create_window(window_size, channel=1):
|
|
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
|
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0).to(device)
|
|
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
|
|
return window
|
|
|
|
def create_window_3d(window_size, channel=1):
|
|
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
|
_2D_window = _1D_window.mm(_1D_window.t())
|
|
_3D_window = _2D_window.unsqueeze(2) @ (_1D_window.t())
|
|
window = _3D_window.expand(1, channel, window_size, window_size, window_size).contiguous().to(device)
|
|
return window
|
|
|
|
|
|
def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
|
|
|
|
if val_range is None:
|
|
if torch.max(img1) > 128:
|
|
max_val = 255
|
|
else:
|
|
max_val = 1
|
|
|
|
if torch.min(img1) < -0.5:
|
|
min_val = -1
|
|
else:
|
|
min_val = 0
|
|
L = max_val - min_val
|
|
else:
|
|
L = val_range
|
|
|
|
padd = 0
|
|
(_, channel, height, width) = img1.size()
|
|
if window is None:
|
|
real_size = min(window_size, height, width)
|
|
window = create_window(real_size, channel=channel).to(img1.device)
|
|
|
|
|
|
|
|
mu1 = F.conv2d(F.pad(img1, (5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=channel)
|
|
mu2 = F.conv2d(F.pad(img2, (5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=channel)
|
|
|
|
mu1_sq = mu1.pow(2)
|
|
mu2_sq = mu2.pow(2)
|
|
mu1_mu2 = mu1 * mu2
|
|
|
|
sigma1_sq = F.conv2d(F.pad(img1 * img1, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu1_sq
|
|
sigma2_sq = F.conv2d(F.pad(img2 * img2, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu2_sq
|
|
sigma12 = F.conv2d(F.pad(img1 * img2, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu1_mu2
|
|
|
|
C1 = (0.01 * L) ** 2
|
|
C2 = (0.03 * L) ** 2
|
|
|
|
v1 = 2.0 * sigma12 + C2
|
|
v2 = sigma1_sq + sigma2_sq + C2
|
|
cs = torch.mean(v1 / v2)
|
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
|
|
|
|
if size_average:
|
|
ret = ssim_map.mean()
|
|
else:
|
|
ret = ssim_map.mean(1).mean(1).mean(1)
|
|
|
|
if full:
|
|
return ret, cs
|
|
return ret
|
|
|
|
|
|
def ssim_matlab(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
|
|
|
|
if val_range is None:
|
|
if torch.max(img1) > 128:
|
|
max_val = 255
|
|
else:
|
|
max_val = 1
|
|
|
|
if torch.min(img1) < -0.5:
|
|
min_val = -1
|
|
else:
|
|
min_val = 0
|
|
L = max_val - min_val
|
|
else:
|
|
L = val_range
|
|
|
|
padd = 0
|
|
(_, _, height, width) = img1.size()
|
|
if window is None:
|
|
real_size = min(window_size, height, width)
|
|
window = create_window_3d(real_size, channel=1).to(img1.device)
|
|
|
|
|
|
img1 = img1.unsqueeze(1)
|
|
img2 = img2.unsqueeze(1)
|
|
|
|
mu1 = F.conv3d(F.pad(img1, (5, 5, 5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=1)
|
|
mu2 = F.conv3d(F.pad(img2, (5, 5, 5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=1)
|
|
|
|
mu1_sq = mu1.pow(2)
|
|
mu2_sq = mu2.pow(2)
|
|
mu1_mu2 = mu1 * mu2
|
|
|
|
sigma1_sq = F.conv3d(F.pad(img1 * img1, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu1_sq
|
|
sigma2_sq = F.conv3d(F.pad(img2 * img2, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu2_sq
|
|
sigma12 = F.conv3d(F.pad(img1 * img2, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu1_mu2
|
|
|
|
C1 = (0.01 * L) ** 2
|
|
C2 = (0.03 * L) ** 2
|
|
|
|
v1 = 2.0 * sigma12 + C2
|
|
v2 = sigma1_sq + sigma2_sq + C2
|
|
cs = torch.mean(v1 / v2)
|
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
|
|
|
|
if size_average:
|
|
ret = ssim_map.mean()
|
|
else:
|
|
ret = ssim_map.mean(1).mean(1).mean(1)
|
|
|
|
if full:
|
|
return ret, cs
|
|
return ret
|
|
|
|
|
|
def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=False):
|
|
device = img1.device
|
|
weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(device)
|
|
levels = weights.size()[0]
|
|
mssim = []
|
|
mcs = []
|
|
for _ in range(levels):
|
|
sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range)
|
|
mssim.append(sim)
|
|
mcs.append(cs)
|
|
|
|
img1 = F.avg_pool2d(img1, (2, 2))
|
|
img2 = F.avg_pool2d(img2, (2, 2))
|
|
|
|
mssim = torch.stack(mssim)
|
|
mcs = torch.stack(mcs)
|
|
|
|
|
|
if normalize:
|
|
mssim = (mssim + 1) / 2
|
|
mcs = (mcs + 1) / 2
|
|
|
|
pow1 = mcs ** weights
|
|
pow2 = mssim ** weights
|
|
|
|
output = torch.prod(pow1[:-1] * pow2[-1])
|
|
return output
|
|
|
|
|
|
|
|
class SSIM(torch.nn.Module):
|
|
def __init__(self, window_size=11, size_average=True, val_range=None):
|
|
super(SSIM, self).__init__()
|
|
self.window_size = window_size
|
|
self.size_average = size_average
|
|
self.val_range = val_range
|
|
|
|
|
|
self.channel = 3
|
|
self.window = create_window(window_size, channel=self.channel)
|
|
|
|
def forward(self, img1, img2):
|
|
(_, channel, _, _) = img1.size()
|
|
|
|
if channel == self.channel and self.window.dtype == img1.dtype:
|
|
window = self.window
|
|
else:
|
|
window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype)
|
|
self.window = window
|
|
self.channel = channel
|
|
|
|
_ssim = ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average)
|
|
dssim = (1 - _ssim) / 2
|
|
return dssim
|
|
|
|
class MSSSIM(torch.nn.Module):
|
|
def __init__(self, window_size=11, size_average=True, channel=3):
|
|
super(MSSSIM, self).__init__()
|
|
self.window_size = window_size
|
|
self.size_average = size_average
|
|
self.channel = channel
|
|
|
|
def forward(self, img1, img2):
|
|
return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average)
|
|
|