|
|
|
|
|
|
|
import numpy as np
|
|
import torch
|
|
from einops import rearrange
|
|
from PIL import Image
|
|
import cv2
|
|
|
|
|
|
|
|
def convert_to_numpy(image):
|
|
if isinstance(image, Image.Image):
|
|
image = np.array(image)
|
|
elif isinstance(image, torch.Tensor):
|
|
image = image.detach().cpu().numpy()
|
|
elif isinstance(image, np.ndarray):
|
|
image = image.copy()
|
|
else:
|
|
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
|
|
return image
|
|
|
|
def resize_image(input_image, resolution):
|
|
H, W, C = input_image.shape
|
|
H = float(H)
|
|
W = float(W)
|
|
k = float(resolution) / min(H, W)
|
|
H *= k
|
|
W *= k
|
|
H = int(np.round(H / 64.0)) * 64
|
|
W = int(np.round(W / 64.0)) * 64
|
|
img = cv2.resize(
|
|
input_image, (W, H),
|
|
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
|
return img, k
|
|
|
|
|
|
def resize_image_ori(h, w, image, k):
|
|
img = cv2.resize(
|
|
image, (w, h),
|
|
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
|
return img
|
|
|
|
class DepthAnnotator:
|
|
def __init__(self, cfg, device=None):
|
|
from .api import MiDaSInference
|
|
pretrained_model = cfg['PRETRAINED_MODEL']
|
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
|
|
self.model = MiDaSInference(model_type='dpt_hybrid', model_path=pretrained_model).to(self.device)
|
|
self.a = cfg.get('A', np.pi * 2.0)
|
|
self.bg_th = cfg.get('BG_TH', 0.1)
|
|
|
|
@torch.no_grad()
|
|
@torch.inference_mode()
|
|
@torch.autocast('cuda', enabled=False)
|
|
def forward(self, image):
|
|
image = convert_to_numpy(image)
|
|
image_depth = image
|
|
h, w, c = image.shape
|
|
image_depth, k = resize_image(image_depth,
|
|
1024 if min(h, w) > 1024 else min(h, w))
|
|
image_depth = torch.from_numpy(image_depth).float().to(self.device)
|
|
image_depth = image_depth / 127.5 - 1.0
|
|
image_depth = rearrange(image_depth, 'h w c -> 1 c h w')
|
|
depth = self.model(image_depth)[0]
|
|
|
|
depth_pt = depth.clone()
|
|
depth_pt -= torch.min(depth_pt)
|
|
depth_pt /= torch.max(depth_pt)
|
|
depth_pt = depth_pt.cpu().numpy()
|
|
depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8)
|
|
depth_image = depth_image[..., None].repeat(3, 2)
|
|
|
|
depth_image = resize_image_ori(h, w, depth_image, k)
|
|
return depth_image
|
|
|
|
|
|
class DepthVideoAnnotator(DepthAnnotator):
|
|
def forward(self, frames):
|
|
ret_frames = []
|
|
for frame in frames:
|
|
anno_frame = super().forward(np.array(frame))
|
|
ret_frames.append(anno_frame)
|
|
return ret_frames |