|
|
|
|
|
|
|
|
|
import cv2
|
|
import torch
|
|
import torch.nn as nn
|
|
from torchvision.transforms import Compose
|
|
|
|
from .dpt_depth import DPTDepthModel
|
|
from .midas_net import MidasNet
|
|
from .midas_net_custom import MidasNet_small
|
|
from .transforms import NormalizeImage, PrepareForNet, Resize
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def disabled_train(self, mode=True):
|
|
"""Overwrite model.train with this function to make sure train/eval mode
|
|
does not change anymore."""
|
|
return self
|
|
|
|
|
|
def load_midas_transform(model_type):
|
|
|
|
|
|
if model_type == 'dpt_large':
|
|
net_w, net_h = 384, 384
|
|
resize_mode = 'minimal'
|
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5],
|
|
std=[0.5, 0.5, 0.5])
|
|
|
|
elif model_type == 'dpt_hybrid':
|
|
net_w, net_h = 384, 384
|
|
resize_mode = 'minimal'
|
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5],
|
|
std=[0.5, 0.5, 0.5])
|
|
|
|
elif model_type == 'midas_v21':
|
|
net_w, net_h = 384, 384
|
|
resize_mode = 'upper_bound'
|
|
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406],
|
|
std=[0.229, 0.224, 0.225])
|
|
|
|
elif model_type == 'midas_v21_small':
|
|
net_w, net_h = 256, 256
|
|
resize_mode = 'upper_bound'
|
|
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406],
|
|
std=[0.229, 0.224, 0.225])
|
|
|
|
else:
|
|
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
|
|
|
transform = Compose([
|
|
Resize(
|
|
net_w,
|
|
net_h,
|
|
resize_target=None,
|
|
keep_aspect_ratio=True,
|
|
ensure_multiple_of=32,
|
|
resize_method=resize_mode,
|
|
image_interpolation_method=cv2.INTER_CUBIC,
|
|
),
|
|
normalization,
|
|
PrepareForNet(),
|
|
])
|
|
|
|
return transform
|
|
|
|
|
|
def load_model(model_type, model_path):
|
|
|
|
|
|
|
|
if model_type == 'dpt_large':
|
|
model = DPTDepthModel(
|
|
path=model_path,
|
|
backbone='vitl16_384',
|
|
non_negative=True,
|
|
)
|
|
net_w, net_h = 384, 384
|
|
resize_mode = 'minimal'
|
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5],
|
|
std=[0.5, 0.5, 0.5])
|
|
|
|
elif model_type == 'dpt_hybrid':
|
|
model = DPTDepthModel(
|
|
path=model_path,
|
|
backbone='vitb_rn50_384',
|
|
non_negative=True,
|
|
)
|
|
net_w, net_h = 384, 384
|
|
resize_mode = 'minimal'
|
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5],
|
|
std=[0.5, 0.5, 0.5])
|
|
|
|
elif model_type == 'midas_v21':
|
|
model = MidasNet(model_path, non_negative=True)
|
|
net_w, net_h = 384, 384
|
|
resize_mode = 'upper_bound'
|
|
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406],
|
|
std=[0.229, 0.224, 0.225])
|
|
|
|
elif model_type == 'midas_v21_small':
|
|
model = MidasNet_small(model_path,
|
|
features=64,
|
|
backbone='efficientnet_lite3',
|
|
exportable=True,
|
|
non_negative=True,
|
|
blocks={'expand': True})
|
|
net_w, net_h = 256, 256
|
|
resize_mode = 'upper_bound'
|
|
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406],
|
|
std=[0.229, 0.224, 0.225])
|
|
|
|
else:
|
|
print(
|
|
f"model_type '{model_type}' not implemented, use: --model_type large"
|
|
)
|
|
assert False
|
|
|
|
transform = Compose([
|
|
Resize(
|
|
net_w,
|
|
net_h,
|
|
resize_target=None,
|
|
keep_aspect_ratio=True,
|
|
ensure_multiple_of=32,
|
|
resize_method=resize_mode,
|
|
image_interpolation_method=cv2.INTER_CUBIC,
|
|
),
|
|
normalization,
|
|
PrepareForNet(),
|
|
])
|
|
|
|
return model.eval(), transform
|
|
|
|
|
|
class MiDaSInference(nn.Module):
|
|
MODEL_TYPES_TORCH_HUB = ['DPT_Large', 'DPT_Hybrid', 'MiDaS_small']
|
|
MODEL_TYPES_ISL = [
|
|
'dpt_large',
|
|
'dpt_hybrid',
|
|
'midas_v21',
|
|
'midas_v21_small',
|
|
]
|
|
|
|
def __init__(self, model_type, model_path):
|
|
super().__init__()
|
|
assert (model_type in self.MODEL_TYPES_ISL)
|
|
model, _ = load_model(model_type, model_path)
|
|
self.model = model
|
|
self.model.train = disabled_train
|
|
|
|
def forward(self, x):
|
|
with torch.no_grad():
|
|
prediction = self.model(x)
|
|
return prediction
|
|
|