|
import time
|
|
import torch
|
|
import cv2
|
|
from PIL import Image, ImageDraw, ImageOps
|
|
import numpy as np
|
|
from typing import Union
|
|
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator
|
|
import matplotlib.pyplot as plt
|
|
import PIL
|
|
from .mask_painter import mask_painter as mask_painter2
|
|
from .base_segmenter import BaseSegmenter
|
|
from .painter import mask_painter, point_painter
|
|
import os
|
|
import requests
|
|
import sys
|
|
|
|
|
|
mask_color = 3
|
|
mask_alpha = 0.7
|
|
contour_color = 1
|
|
contour_width = 5
|
|
point_color_ne = 8
|
|
point_color_ps = 50
|
|
point_alpha = 0.9
|
|
point_radius = 15
|
|
contour_color = 2
|
|
contour_width = 5
|
|
|
|
|
|
class SamControler():
|
|
def __init__(self, SAM_checkpoint, model_type, device):
|
|
'''
|
|
initialize sam controler
|
|
'''
|
|
self.sam_controler = BaseSegmenter(SAM_checkpoint, model_type, device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True,mask_color=3):
|
|
'''
|
|
it is used in first frame in video
|
|
return: mask, logit, painted image(mask+point)
|
|
'''
|
|
|
|
origal_image = self.sam_controler.orignal_image
|
|
neg_flag = labels[-1]
|
|
if neg_flag==1:
|
|
|
|
prompts = {
|
|
'point_coords': points,
|
|
'point_labels': labels,
|
|
}
|
|
masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask)
|
|
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
|
|
prompts = {
|
|
'point_coords': points,
|
|
'point_labels': labels,
|
|
'mask_input': logit[None, :, :]
|
|
}
|
|
masks, scores, logits = self.sam_controler.predict(prompts, 'both', multimask)
|
|
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
|
|
else:
|
|
|
|
prompts = {
|
|
'point_coords': points,
|
|
'point_labels': labels,
|
|
}
|
|
masks, scores, logits = self.sam_controler.predict(prompts, 'point', multimask)
|
|
mask, logit = masks[np.argmax(scores)], logits[np.argmax(scores), :, :]
|
|
|
|
|
|
assert len(points)==len(labels)
|
|
|
|
painted_image = mask_painter(image, mask.astype('uint8'), mask_color, mask_alpha, contour_color, contour_width)
|
|
painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels>0)],axis = 1), point_color_ne, point_alpha, point_radius, contour_color, contour_width)
|
|
painted_image = point_painter(painted_image, np.squeeze(points[np.argwhere(labels<1)],axis = 1), point_color_ps, point_alpha, point_radius, contour_color, contour_width)
|
|
painted_image = Image.fromarray(painted_image)
|
|
|
|
return mask, logit, painted_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|