|
import sys
|
|
|
|
import os
|
|
import json
|
|
import time
|
|
import psutil
|
|
|
|
import imageio
|
|
from PIL import Image
|
|
|
|
import cv2
|
|
import torch
|
|
import numpy as np
|
|
import gradio as gr
|
|
from .tools.painter import mask_painter
|
|
from .tools.interact_tools import SamControler
|
|
from .tools.misc import get_device
|
|
from .tools.download_util import load_file_from_url
|
|
|
|
from .utils.get_default_model import get_matanyone_model
|
|
from .matanyone.inference.inference_core import InferenceCore
|
|
from .matanyone_wrapper import matanyone
|
|
|
|
arg_device = "cuda"
|
|
arg_sam_model_type="vit_h"
|
|
arg_mask_save = False
|
|
model_loaded = False
|
|
model = None
|
|
matanyone_model = None
|
|
|
|
|
|
class MaskGenerator():
|
|
def __init__(self, sam_checkpoint, device):
|
|
global args_device
|
|
args_device = device
|
|
self.samcontroler = SamControler(sam_checkpoint, arg_sam_model_type, arg_device)
|
|
|
|
def first_frame_click(self, image: np.ndarray, points:np.ndarray, labels: np.ndarray, multimask=True):
|
|
mask, logit, painted_image = self.samcontroler.first_frame_click(image, points, labels, multimask)
|
|
return mask, logit, painted_image
|
|
|
|
|
|
def get_prompt(click_state, click_input):
|
|
inputs = json.loads(click_input)
|
|
points = click_state[0]
|
|
labels = click_state[1]
|
|
for input in inputs:
|
|
points.append(input[:2])
|
|
labels.append(input[2])
|
|
click_state[0] = points
|
|
click_state[1] = labels
|
|
prompt = {
|
|
"prompt_type":["click"],
|
|
"input_point":click_state[0],
|
|
"input_label":click_state[1],
|
|
"multimask_output":"True",
|
|
}
|
|
return prompt
|
|
|
|
def get_frames_from_image(image_input, image_state):
|
|
"""
|
|
Args:
|
|
video_path:str
|
|
timestamp:float64
|
|
Return
|
|
[[0:nearest_frame], [nearest_frame:], nearest_frame]
|
|
"""
|
|
|
|
user_name = time.time()
|
|
frames = [image_input] * 2
|
|
image_size = (frames[0].shape[0],frames[0].shape[1])
|
|
|
|
image_state = {
|
|
"user_name": user_name,
|
|
"image_name": "output.png",
|
|
"origin_images": frames,
|
|
"painted_images": frames.copy(),
|
|
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames),
|
|
"logits": [None]*len(frames),
|
|
"select_frame_number": 0,
|
|
"last_frame_numer": 0,
|
|
"fps": None
|
|
}
|
|
image_info = "Image Name: N/A,\nFPS: N/A,\nTotal Frames: {},\nImage Size:{}".format(len(frames), image_size)
|
|
model.samcontroler.sam_controler.reset_image()
|
|
model.samcontroler.sam_controler.set_image(image_state["origin_images"][0])
|
|
return image_state, image_info, image_state["origin_images"][0], \
|
|
gr.update(visible=True, maximum=10, value=10), gr.update(visible=False, maximum=len(frames), value=len(frames)), \
|
|
gr.update(visible=True), gr.update(visible=True), \
|
|
gr.update(visible=True), gr.update(visible=True),\
|
|
gr.update(visible=True), gr.update(visible=True), \
|
|
gr.update(visible=True), gr.update(visible=False), \
|
|
gr.update(visible=False), gr.update(visible=True), \
|
|
gr.update(visible=True)
|
|
|
|
|
|
def get_frames_from_video(video_input, video_state):
|
|
"""
|
|
Args:
|
|
video_path:str
|
|
timestamp:float64
|
|
Return
|
|
[[0:nearest_frame], [nearest_frame:], nearest_frame]
|
|
"""
|
|
|
|
while model == None:
|
|
time.sleep(1)
|
|
|
|
video_path = video_input
|
|
frames = []
|
|
user_name = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
audio_path = ""
|
|
|
|
try:
|
|
cap = cv2.VideoCapture(video_path)
|
|
fps = cap.get(cv2.CAP_PROP_FPS)
|
|
while cap.isOpened():
|
|
ret, frame = cap.read()
|
|
if ret == True:
|
|
current_memory_usage = psutil.virtual_memory().percent
|
|
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
|
|
if current_memory_usage > 90:
|
|
break
|
|
else:
|
|
break
|
|
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e:
|
|
print("read_frame_source:{} error. {}\n".format(video_path, str(e)))
|
|
image_size = (frames[0].shape[0],frames[0].shape[1])
|
|
|
|
|
|
if image_size[0]>=1280 and image_size[0]>=1280:
|
|
scale = 1080 / min(image_size)
|
|
new_w = int(image_size[1] * scale)
|
|
new_h = int(image_size[0] * scale)
|
|
|
|
frames = [cv2.resize(f, (new_w, new_h), interpolation=cv2.INTER_AREA) for f in frames]
|
|
|
|
image_size = (frames[0].shape[0],frames[0].shape[1])
|
|
|
|
|
|
video_state = {
|
|
"user_name": user_name,
|
|
"video_name": os.path.split(video_path)[-1],
|
|
"origin_images": frames,
|
|
"painted_images": frames.copy(),
|
|
"masks": [np.zeros((frames[0].shape[0],frames[0].shape[1]), np.uint8)]*len(frames),
|
|
"logits": [None]*len(frames),
|
|
"select_frame_number": 0,
|
|
"last_frame_number": 0,
|
|
"fps": fps,
|
|
"audio": audio_path
|
|
}
|
|
video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), len(frames), image_size)
|
|
model.samcontroler.sam_controler.reset_image()
|
|
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0])
|
|
return video_state, video_info, video_state["origin_images"][0], \
|
|
gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=True, maximum=len(frames), value=len(frames)), gr.update(visible=False, maximum=len(frames), value=len(frames)), \
|
|
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), \
|
|
gr.update(visible=True), gr.update(visible=True),\
|
|
gr.update(visible=True), gr.update(visible=False), \
|
|
gr.update(visible=False), gr.update(visible=False), \
|
|
gr.update(visible=False), gr.update(visible=True), \
|
|
gr.update(visible=True)
|
|
|
|
|
|
def select_video_template(image_selection_slider, video_state, interactive_state):
|
|
|
|
image_selection_slider -= 1
|
|
video_state["select_frame_number"] = image_selection_slider
|
|
|
|
|
|
model.samcontroler.sam_controler.reset_image()
|
|
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])
|
|
|
|
return video_state["painted_images"][image_selection_slider], video_state, interactive_state
|
|
|
|
def select_image_template(image_selection_slider, video_state, interactive_state):
|
|
|
|
image_selection_slider = 0
|
|
video_state["select_frame_number"] = image_selection_slider
|
|
|
|
|
|
model.samcontroler.sam_controler.reset_image()
|
|
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider])
|
|
|
|
return video_state["painted_images"][image_selection_slider], video_state, interactive_state
|
|
|
|
|
|
def get_end_number(track_pause_number_slider, video_state, interactive_state):
|
|
interactive_state["track_end_number"] = track_pause_number_slider
|
|
|
|
return video_state["painted_images"][track_pause_number_slider],interactive_state
|
|
|
|
|
|
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData ):
|
|
"""
|
|
Args:
|
|
template_frame: PIL.Image
|
|
point_prompt: flag for positive or negative button click
|
|
click_state: [[points], [labels]]
|
|
"""
|
|
if point_prompt == "Positive":
|
|
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1])
|
|
interactive_state["positive_click_times"] += 1
|
|
else:
|
|
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1])
|
|
interactive_state["negative_click_times"] += 1
|
|
|
|
|
|
model.samcontroler.sam_controler.reset_image()
|
|
model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]])
|
|
prompt = get_prompt(click_state=click_state, click_input=coordinate)
|
|
|
|
mask, logit, painted_image = model.first_frame_click(
|
|
image=video_state["origin_images"][video_state["select_frame_number"]],
|
|
points=np.array(prompt["input_point"]),
|
|
labels=np.array(prompt["input_label"]),
|
|
multimask=prompt["multimask_output"],
|
|
)
|
|
video_state["masks"][video_state["select_frame_number"]] = mask
|
|
video_state["logits"][video_state["select_frame_number"]] = logit
|
|
video_state["painted_images"][video_state["select_frame_number"]] = painted_image
|
|
|
|
return painted_image, video_state, interactive_state
|
|
|
|
def add_multi_mask(video_state, interactive_state, mask_dropdown):
|
|
mask = video_state["masks"][video_state["select_frame_number"]]
|
|
interactive_state["multi_mask"]["masks"].append(mask)
|
|
interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
|
|
mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])))
|
|
select_frame = show_mask(video_state, interactive_state, mask_dropdown)
|
|
|
|
return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]]
|
|
|
|
def clear_click(video_state, click_state):
|
|
click_state = [[],[]]
|
|
template_frame = video_state["origin_images"][video_state["select_frame_number"]]
|
|
return template_frame, click_state
|
|
|
|
def remove_multi_mask(interactive_state, mask_dropdown):
|
|
interactive_state["multi_mask"]["mask_names"]= []
|
|
interactive_state["multi_mask"]["masks"] = []
|
|
|
|
return interactive_state, gr.update(choices=[],value=[])
|
|
|
|
def show_mask(video_state, interactive_state, mask_dropdown):
|
|
mask_dropdown.sort()
|
|
if video_state["origin_images"]:
|
|
select_frame = video_state["origin_images"][video_state["select_frame_number"]]
|
|
for i in range(len(mask_dropdown)):
|
|
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
|
|
mask = interactive_state["multi_mask"]["masks"][mask_number]
|
|
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2)
|
|
|
|
return select_frame
|
|
|
|
|
|
def save_video(frames, output_path, fps):
|
|
|
|
writer = imageio.get_writer( output_path, fps=fps, codec='libx264', quality=8)
|
|
for frame in frames:
|
|
writer.append_data(frame)
|
|
writer.close()
|
|
|
|
return output_path
|
|
|
|
|
|
def image_matting(video_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, refine_iter):
|
|
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg)
|
|
if interactive_state["track_end_number"]:
|
|
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]]
|
|
else:
|
|
following_frames = video_state["origin_images"][video_state["select_frame_number"]:]
|
|
|
|
if interactive_state["multi_mask"]["masks"]:
|
|
if len(mask_dropdown) == 0:
|
|
mask_dropdown = ["mask_001"]
|
|
mask_dropdown.sort()
|
|
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
|
|
for i in range(1,len(mask_dropdown)):
|
|
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
|
|
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
|
|
video_state["masks"][video_state["select_frame_number"]]= template_mask
|
|
else:
|
|
template_mask = video_state["masks"][video_state["select_frame_number"]]
|
|
|
|
|
|
if len(np.unique(template_mask))==1:
|
|
template_mask[0][0]=1
|
|
foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size, n_warmup=refine_iter)
|
|
|
|
|
|
foreground_mat = False
|
|
|
|
output_frames = []
|
|
for frame_origin, frame_alpha in zip(following_frames, alpha):
|
|
if foreground_mat:
|
|
frame_alpha[frame_alpha > 127] = 255
|
|
frame_alpha[frame_alpha <= 127] = 0
|
|
else:
|
|
frame_temp = frame_alpha.copy()
|
|
frame_alpha[frame_temp > 127] = 0
|
|
frame_alpha[frame_temp <= 127] = 255
|
|
|
|
|
|
output_frame = np.bitwise_and(frame_origin, 255-frame_alpha)
|
|
frame_grey = frame_alpha.copy()
|
|
frame_grey[frame_alpha == 255] = 255
|
|
output_frame += frame_grey
|
|
output_frames.append(output_frame)
|
|
foreground = output_frames
|
|
|
|
foreground_output = Image.fromarray(foreground[-1])
|
|
alpha_output = Image.fromarray(alpha[-1][:,:,0])
|
|
|
|
return foreground_output, gr.update(visible=True)
|
|
|
|
|
|
def video_matting(video_state, end_slider, matting_type, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size):
|
|
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg)
|
|
|
|
|
|
|
|
end_slider = max(video_state["select_frame_number"] +1, end_slider)
|
|
following_frames = video_state["origin_images"][video_state["select_frame_number"]: end_slider]
|
|
|
|
if interactive_state["multi_mask"]["masks"]:
|
|
if len(mask_dropdown) == 0:
|
|
mask_dropdown = ["mask_001"]
|
|
mask_dropdown.sort()
|
|
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1]))
|
|
for i in range(1,len(mask_dropdown)):
|
|
mask_number = int(mask_dropdown[i].split("_")[1]) - 1
|
|
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1)
|
|
video_state["masks"][video_state["select_frame_number"]]= template_mask
|
|
else:
|
|
template_mask = video_state["masks"][video_state["select_frame_number"]]
|
|
fps = video_state["fps"]
|
|
|
|
audio_path = video_state["audio"]
|
|
|
|
|
|
if len(np.unique(template_mask))==1:
|
|
template_mask[0][0]=1
|
|
foreground, alpha = matanyone(matanyone_processor, following_frames, template_mask*255, r_erode=erode_kernel_size, r_dilate=dilate_kernel_size)
|
|
output_frames = []
|
|
foreground_mat = matting_type == "Foreground"
|
|
if not foreground_mat:
|
|
new_alpha = []
|
|
for frame_alpha in alpha:
|
|
frame_temp = frame_alpha.copy()
|
|
frame_alpha[frame_temp > 127] = 0
|
|
frame_alpha[frame_temp <= 127] = 255
|
|
new_alpha.append(frame_alpha)
|
|
alpha = new_alpha
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
foreground = following_frames
|
|
|
|
if not os.path.exists("mask_outputs"):
|
|
os.makedirs("mask_outputs")
|
|
|
|
file_name= video_state["video_name"]
|
|
file_name = ".".join(file_name.split(".")[:-1])
|
|
foreground_output = save_video(foreground, output_path="./mask_outputs/{}_fg.mp4".format(file_name), fps=fps)
|
|
|
|
alpha_output = save_video(alpha, output_path="./mask_outputs/{}_alpha.mp4".format(file_name), fps=fps)
|
|
|
|
|
|
return foreground_output, alpha_output, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
|
|
|
|
|
def show_outputs():
|
|
return gr.update(visible=True), gr.update(visible=True)
|
|
|
|
def add_audio_to_video(video_path, audio_path, output_path):
|
|
try:
|
|
video_input = ffmpeg.input(video_path)
|
|
audio_input = ffmpeg.input(audio_path)
|
|
|
|
_ = (
|
|
ffmpeg
|
|
.output(video_input, audio_input, output_path, vcodec="copy", acodec="aac")
|
|
.run(overwrite_output=True, capture_stdout=True, capture_stderr=True)
|
|
)
|
|
return output_path
|
|
except ffmpeg.Error as e:
|
|
print(f"FFmpeg error:\n{e.stderr.decode()}")
|
|
return None
|
|
|
|
|
|
def generate_video_from_frames(frames, output_path, fps=30, gray2rgb=False, audio_path=""):
|
|
"""
|
|
Generates a video from a list of frames.
|
|
|
|
Args:
|
|
frames (list of numpy arrays): The frames to include in the video.
|
|
output_path (str): The path to save the generated video.
|
|
fps (int, optional): The frame rate of the output video. Defaults to 30.
|
|
"""
|
|
frames = torch.from_numpy(np.asarray(frames))
|
|
_, h, w, _ = frames.shape
|
|
if gray2rgb:
|
|
frames = np.repeat(frames, 3, axis=3)
|
|
|
|
if not os.path.exists(os.path.dirname(output_path)):
|
|
os.makedirs(os.path.dirname(output_path))
|
|
video_temp_path = output_path.replace(".mp4", "_temp.mp4")
|
|
|
|
|
|
imageio.mimwrite(video_temp_path, frames, fps=fps, quality=7,
|
|
codec='libx264', ffmpeg_params=["-vf", f"scale={w}:{h}"])
|
|
|
|
|
|
if audio_path != "" and os.path.exists(audio_path):
|
|
output_path = add_audio_to_video(video_temp_path, audio_path, output_path)
|
|
os.remove(video_temp_path)
|
|
return output_path
|
|
else:
|
|
return video_temp_path
|
|
|
|
|
|
def restart():
|
|
return {
|
|
"user_name": "",
|
|
"video_name": "",
|
|
"origin_images": None,
|
|
"painted_images": None,
|
|
"masks": None,
|
|
"inpaint_masks": None,
|
|
"logits": None,
|
|
"select_frame_number": 0,
|
|
"fps": 30
|
|
}, {
|
|
"inference_times": 0,
|
|
"negative_click_times" : 0,
|
|
"positive_click_times": 0,
|
|
"mask_save": False,
|
|
"multi_mask": {
|
|
"mask_names": [],
|
|
"masks": []
|
|
},
|
|
"track_end_number": None,
|
|
}, [[],[]], None, None, \
|
|
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\
|
|
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
|
|
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \
|
|
gr.update(visible=False), gr.update(visible=False, choices=[], value=[]), "", gr.update(visible=False)
|
|
|
|
def load_unload_models(selected):
|
|
global model_loaded
|
|
global model
|
|
global matanyone_model
|
|
if selected:
|
|
|
|
if model_loaded:
|
|
model.samcontroler.sam_controler.model.to(arg_device)
|
|
matanyone_model.to(arg_device)
|
|
else:
|
|
|
|
sam_checkpoint_url_dict = {
|
|
'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
|
|
'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
|
|
'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
|
|
}
|
|
|
|
|
|
from mmgp import offload
|
|
|
|
|
|
sam_checkpoint = None
|
|
|
|
transfer_stream = torch.cuda.Stream()
|
|
with torch.cuda.stream(transfer_stream):
|
|
|
|
model = MaskGenerator(sam_checkpoint, arg_device)
|
|
from .matanyone.model.matanyone import MatAnyone
|
|
matanyone_model = MatAnyone.from_pretrained("PeiqingYang/MatAnyone")
|
|
|
|
|
|
matanyone_model = matanyone_model.to(arg_device).eval()
|
|
matanyone_processor = InferenceCore(matanyone_model, cfg=matanyone_model.cfg)
|
|
model_loaded = True
|
|
else:
|
|
|
|
import gc
|
|
model.samcontroler.sam_controler.model.to("cpu")
|
|
matanyone_model.to("cpu")
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
def get_vmc_event_handler():
|
|
return load_unload_models
|
|
|
|
def export_to_vace_video_input(foreground_video_output):
|
|
gr.Info("Masked Video Input transferred to Vace For Inpainting")
|
|
return "V#" + str(time.time()), foreground_video_output
|
|
|
|
|
|
def export_image(image_refs, image_output):
|
|
gr.Info("Masked Image transferred to Current Video")
|
|
|
|
if image_refs == None:
|
|
image_refs =[]
|
|
image_refs.append( image_output)
|
|
return image_refs
|
|
|
|
def export_to_current_video_engine(model_type, foreground_video_output, alpha_video_output):
|
|
gr.Info("Original Video and Full Mask have been transferred")
|
|
|
|
if "custom_edit" in model_type and False:
|
|
return gr.update(), alpha_video_output
|
|
else:
|
|
return foreground_video_output, alpha_video_output
|
|
|
|
|
|
def teleport_to_video_tab(tab_state):
|
|
from wgp import set_new_tab
|
|
set_new_tab(tab_state, 0)
|
|
return gr.Tabs(selected="video_gen")
|
|
|
|
|
|
def display(tabs, tab_state, model_choice, vace_video_input, vace_video_mask, vace_image_refs, video_prompt_video_guide_trigger):
|
|
|
|
|
|
media_url = "https://github.com/pq-yang/MatAnyone/releases/download/media/"
|
|
|
|
|
|
|
|
gr.Markdown("<B>Mast Edition is provided by MatAnyone</B>")
|
|
gr.Markdown("If you have some trouble creating the perfect mask, be aware of these tips:")
|
|
gr.Markdown("- Using the Matanyone Settings you can also define Negative Point Prompts to remove parts of the current selection.")
|
|
gr.Markdown("- Sometime it is very hard to fit everything you want in a single mask, it may be much easier to combine multiple independent sub Masks before producing the Matting : each sub Mask is created by selecting an area of an image and by clicking the Add Mask button. Sub masks can then be enabled / disabled in the Matanyone settings.")
|
|
|
|
with gr.Column( visible=True):
|
|
with gr.Row():
|
|
with gr.Accordion("Video Tutorial (click to expand)", open=False, elem_classes="custom-bg"):
|
|
with gr.Row():
|
|
with gr.Column():
|
|
gr.Markdown("### Case 1: Single Target")
|
|
gr.Video(value="preprocessing/matanyone/tutorial_single_target.mp4", elem_classes="video")
|
|
|
|
with gr.Column():
|
|
gr.Markdown("### Case 2: Multiple Targets")
|
|
gr.Video(value="preprocessing/matanyone/tutorial_multi_targets.mp4", elem_classes="video")
|
|
|
|
|
|
|
|
|
|
with gr.Tabs():
|
|
with gr.TabItem("Video"):
|
|
|
|
click_state = gr.State([[],[]])
|
|
|
|
interactive_state = gr.State({
|
|
"inference_times": 0,
|
|
"negative_click_times" : 0,
|
|
"positive_click_times": 0,
|
|
"mask_save": arg_mask_save,
|
|
"multi_mask": {
|
|
"mask_names": [],
|
|
"masks": []
|
|
},
|
|
"track_end_number": None,
|
|
}
|
|
)
|
|
|
|
video_state = gr.State(
|
|
{
|
|
"user_name": "",
|
|
"video_name": "",
|
|
"origin_images": None,
|
|
"painted_images": None,
|
|
"masks": None,
|
|
"inpaint_masks": None,
|
|
"logits": None,
|
|
"select_frame_number": 0,
|
|
"fps": 16,
|
|
"audio": "",
|
|
}
|
|
)
|
|
|
|
with gr.Column( visible=True):
|
|
with gr.Row():
|
|
with gr.Accordion('MatAnyone Settings (click to expand)', open=False):
|
|
with gr.Row():
|
|
erode_kernel_size = gr.Slider(label='Erode Kernel Size',
|
|
minimum=0,
|
|
maximum=30,
|
|
step=1,
|
|
value=10,
|
|
info="Erosion on the added mask",
|
|
interactive=True)
|
|
dilate_kernel_size = gr.Slider(label='Dilate Kernel Size',
|
|
minimum=0,
|
|
maximum=30,
|
|
step=1,
|
|
value=10,
|
|
info="Dilation on the added mask",
|
|
interactive=True)
|
|
|
|
with gr.Row():
|
|
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Start Frame", info="Choose the start frame for target assignment and video matting", visible=False)
|
|
end_selection_slider = gr.Slider(minimum=1, maximum=300, step=1, value=81, label="Last Frame to Process", info="Last Frame to Process", visible=False)
|
|
|
|
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="End frame", visible=False)
|
|
with gr.Row():
|
|
point_prompt = gr.Radio(
|
|
choices=["Positive", "Negative"],
|
|
value="Positive",
|
|
label="Point Prompt",
|
|
info="Click to add positive or negative point for target mask",
|
|
interactive=True,
|
|
visible=False,
|
|
min_width=100,
|
|
scale=1)
|
|
matting_type = gr.Radio(
|
|
choices=["Foreground", "Background"],
|
|
value="Foreground",
|
|
label="Matting Type",
|
|
info="Type of Video Matting to Generate",
|
|
interactive=True,
|
|
visible=False,
|
|
min_width=100,
|
|
scale=1)
|
|
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False, scale=2)
|
|
|
|
|
|
with gr.Row(equal_height=True):
|
|
with gr.Column(scale=2):
|
|
gr.Markdown("## Step1: Upload video")
|
|
with gr.Column(scale=2):
|
|
step2_title = gr.Markdown("## Step2: Add masks <small>(Several clicks then **`Add Mask`** <u>one by one</u>)</small>", visible=False)
|
|
with gr.Row(equal_height=True):
|
|
with gr.Column(scale=2):
|
|
video_input = gr.Video(label="Input Video", elem_classes="video")
|
|
extract_frames_button = gr.Button(value="Load Video", interactive=True, elem_classes="new_button")
|
|
with gr.Column(scale=2):
|
|
video_info = gr.Textbox(label="Video Info", visible=False)
|
|
template_frame = gr.Image(label="Start Frame", type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image")
|
|
with gr.Row():
|
|
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, min_width=100)
|
|
add_mask_button = gr.Button(value="Set Mask", interactive=True, visible=False, min_width=100)
|
|
remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, min_width=100)
|
|
matting_button = gr.Button(value="Generate Video Matting", interactive=True, visible=False, min_width=100)
|
|
with gr.Row():
|
|
gr.Markdown("")
|
|
|
|
|
|
with gr.Column() as output_row:
|
|
with gr.Row():
|
|
with gr.Column(scale=2):
|
|
foreground_video_output = gr.Video(label="Original Video Input", visible=False, elem_classes="video")
|
|
foreground_output_button = gr.Button(value="Black & White Video Output", visible=False, elem_classes="new_button")
|
|
with gr.Column(scale=2):
|
|
alpha_video_output = gr.Video(label="B & W Mask Video Output", visible=False, elem_classes="video")
|
|
alpha_output_button = gr.Button(value="Alpha Mask Output", visible=False, elem_classes="new_button")
|
|
with gr.Row():
|
|
with gr.Row(visible= False):
|
|
export_to_vace_video_14B_btn = gr.Button("Export to current Video Input Video For Inpainting", visible= False)
|
|
with gr.Row(visible= True):
|
|
export_to_current_video_engine_btn = gr.Button("Export to Control Video Input and Video Mask Input", visible= False)
|
|
|
|
export_to_current_video_engine_btn.click( fn=export_to_current_video_engine, inputs= [model_choice, foreground_video_output, alpha_video_output], outputs= [vace_video_input, vace_video_mask]).then(
|
|
fn=teleport_to_video_tab, inputs= [tab_state], outputs= [tabs])
|
|
|
|
|
|
|
|
extract_frames_button.click(
|
|
fn=get_frames_from_video,
|
|
inputs=[
|
|
video_input, video_state
|
|
],
|
|
outputs=[video_state, video_info, template_frame,
|
|
image_selection_slider, end_selection_slider, track_pause_number_slider, point_prompt, matting_type, clear_button_click, add_mask_button, matting_button, template_frame,
|
|
foreground_video_output, alpha_video_output, foreground_output_button, alpha_output_button, mask_dropdown, step2_title]
|
|
)
|
|
|
|
|
|
image_selection_slider.release(fn=select_video_template,
|
|
inputs=[image_selection_slider, video_state, interactive_state],
|
|
outputs=[template_frame, video_state, interactive_state], api_name="select_image")
|
|
track_pause_number_slider.release(fn=get_end_number,
|
|
inputs=[track_pause_number_slider, video_state, interactive_state],
|
|
outputs=[template_frame, interactive_state], api_name="end_image")
|
|
|
|
|
|
template_frame.select(
|
|
fn=sam_refine,
|
|
inputs=[video_state, point_prompt, click_state, interactive_state],
|
|
outputs=[template_frame, video_state, interactive_state]
|
|
)
|
|
|
|
|
|
add_mask_button.click(
|
|
fn=add_multi_mask,
|
|
inputs=[video_state, interactive_state, mask_dropdown],
|
|
outputs=[interactive_state, mask_dropdown, template_frame, click_state]
|
|
)
|
|
|
|
remove_mask_button.click(
|
|
fn=remove_multi_mask,
|
|
inputs=[interactive_state, mask_dropdown],
|
|
outputs=[interactive_state, mask_dropdown]
|
|
)
|
|
|
|
|
|
matting_button.click(
|
|
fn=show_outputs,
|
|
inputs=[],
|
|
outputs=[foreground_video_output, alpha_video_output]).then(
|
|
fn=video_matting,
|
|
inputs=[video_state, end_selection_slider, matting_type, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size],
|
|
outputs=[foreground_video_output, alpha_video_output,foreground_video_output, alpha_video_output, export_to_vace_video_14B_btn, export_to_current_video_engine_btn]
|
|
)
|
|
|
|
|
|
mask_dropdown.change(
|
|
fn=show_mask,
|
|
inputs=[video_state, interactive_state, mask_dropdown],
|
|
outputs=[template_frame]
|
|
)
|
|
|
|
|
|
video_input.change(
|
|
fn=restart,
|
|
inputs=[],
|
|
outputs=[
|
|
video_state,
|
|
interactive_state,
|
|
click_state,
|
|
foreground_video_output, alpha_video_output,
|
|
template_frame,
|
|
image_selection_slider, end_selection_slider, track_pause_number_slider,point_prompt, export_to_vace_video_14B_btn, export_to_current_video_engine_btn, matting_type, clear_button_click,
|
|
add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, video_info, step2_title
|
|
],
|
|
queue=False,
|
|
show_progress=False)
|
|
|
|
video_input.clear(
|
|
fn=restart,
|
|
inputs=[],
|
|
outputs=[
|
|
video_state,
|
|
interactive_state,
|
|
click_state,
|
|
foreground_video_output, alpha_video_output,
|
|
template_frame,
|
|
image_selection_slider , end_selection_slider, track_pause_number_slider,point_prompt, export_to_vace_video_14B_btn, export_to_current_video_engine_btn, matting_type, clear_button_click,
|
|
add_mask_button, matting_button, template_frame, foreground_video_output, alpha_video_output, remove_mask_button, foreground_output_button, alpha_output_button, mask_dropdown, video_info, step2_title
|
|
],
|
|
queue=False,
|
|
show_progress=False)
|
|
|
|
|
|
clear_button_click.click(
|
|
fn = clear_click,
|
|
inputs = [video_state, click_state,],
|
|
outputs = [template_frame,click_state],
|
|
)
|
|
|
|
|
|
|
|
with gr.TabItem("Image"):
|
|
click_state = gr.State([[],[]])
|
|
|
|
interactive_state = gr.State({
|
|
"inference_times": 0,
|
|
"negative_click_times" : 0,
|
|
"positive_click_times": 0,
|
|
"mask_save": False,
|
|
"multi_mask": {
|
|
"mask_names": [],
|
|
"masks": []
|
|
},
|
|
"track_end_number": None,
|
|
}
|
|
)
|
|
|
|
image_state = gr.State(
|
|
{
|
|
"user_name": "",
|
|
"image_name": "",
|
|
"origin_images": None,
|
|
"painted_images": None,
|
|
"masks": None,
|
|
"inpaint_masks": None,
|
|
"logits": None,
|
|
"select_frame_number": 0,
|
|
"fps": 30
|
|
}
|
|
)
|
|
|
|
with gr.Group(elem_classes="gr-monochrome-group", visible=True):
|
|
with gr.Row():
|
|
with gr.Accordion('MatAnyone Settings (click to expand)', open=False):
|
|
with gr.Row():
|
|
erode_kernel_size = gr.Slider(label='Erode Kernel Size',
|
|
minimum=0,
|
|
maximum=30,
|
|
step=1,
|
|
value=10,
|
|
info="Erosion on the added mask",
|
|
interactive=True)
|
|
dilate_kernel_size = gr.Slider(label='Dilate Kernel Size',
|
|
minimum=0,
|
|
maximum=30,
|
|
step=1,
|
|
value=10,
|
|
info="Dilation on the added mask",
|
|
interactive=True)
|
|
|
|
with gr.Row():
|
|
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Num of Refinement Iterations", info="More iterations → More details & More time", visible=False)
|
|
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False)
|
|
with gr.Row():
|
|
point_prompt = gr.Radio(
|
|
choices=["Positive", "Negative"],
|
|
value="Positive",
|
|
label="Point Prompt",
|
|
info="Click to add positive or negative point for target mask",
|
|
interactive=True,
|
|
visible=False,
|
|
min_width=100,
|
|
scale=1)
|
|
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask Selection", info="Choose 1~all mask(s) added in Step 2", visible=False)
|
|
|
|
|
|
with gr.Column():
|
|
|
|
with gr.Row(equal_height=True):
|
|
with gr.Column(scale=2):
|
|
gr.Markdown("## Step1: Upload image")
|
|
with gr.Column(scale=2):
|
|
step2_title = gr.Markdown("## Step2: Add masks <small>(Several clicks then **`Add Mask`** <u>one by one</u>)</small>", visible=False)
|
|
with gr.Row(equal_height=True):
|
|
with gr.Column(scale=2):
|
|
image_input = gr.Image(label="Input Image", elem_classes="image")
|
|
extract_frames_button = gr.Button(value="Load Image", interactive=True, elem_classes="new_button")
|
|
with gr.Column(scale=2):
|
|
image_info = gr.Textbox(label="Image Info", visible=False)
|
|
template_frame = gr.Image(type="pil", label="Start Frame", interactive=True, elem_id="template_frame", visible=False, elem_classes="image")
|
|
with gr.Row(equal_height=True, elem_classes="mask_button_group"):
|
|
clear_button_click = gr.Button(value="Clear Clicks", interactive=True, visible=False, elem_classes="new_button", min_width=100)
|
|
add_mask_button = gr.Button(value="Add Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100)
|
|
remove_mask_button = gr.Button(value="Remove Mask", interactive=True, visible=False, elem_classes="new_button", min_width=100)
|
|
matting_button = gr.Button(value="Image Matting", interactive=True, visible=False, elem_classes="green_button", min_width=100)
|
|
|
|
|
|
with gr.Row(equal_height=True):
|
|
foreground_image_output = gr.Image(type="pil", label="Foreground Output", visible=False, elem_classes="image")
|
|
with gr.Row():
|
|
with gr.Row():
|
|
export_image_btn = gr.Button(value="Add to current Reference Images", visible=False, elem_classes="new_button")
|
|
with gr.Column(scale=2, visible= False):
|
|
alpha_image_output = gr.Image(type="pil", label="Alpha Output", visible=False, elem_classes="image")
|
|
alpha_output_button = gr.Button(value="Alpha Mask Output", visible=False, elem_classes="new_button")
|
|
|
|
export_image_btn.click( fn=export_image, inputs= [vace_image_refs, foreground_image_output], outputs= [vace_image_refs]).then(
|
|
fn=teleport_to_video_tab, inputs= [], outputs= [tabs])
|
|
|
|
|
|
extract_frames_button.click(
|
|
fn=get_frames_from_image,
|
|
inputs=[
|
|
image_input, image_state
|
|
],
|
|
outputs=[image_state, image_info, template_frame,
|
|
image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, add_mask_button, matting_button, template_frame,
|
|
foreground_image_output, alpha_image_output, export_image_btn, alpha_output_button, mask_dropdown, step2_title]
|
|
)
|
|
|
|
|
|
image_selection_slider.release(fn=select_image_template,
|
|
inputs=[image_selection_slider, image_state, interactive_state],
|
|
outputs=[template_frame, image_state, interactive_state], api_name="select_image")
|
|
track_pause_number_slider.release(fn=get_end_number,
|
|
inputs=[track_pause_number_slider, image_state, interactive_state],
|
|
outputs=[template_frame, interactive_state], api_name="end_image")
|
|
|
|
|
|
template_frame.select(
|
|
fn=sam_refine,
|
|
inputs=[image_state, point_prompt, click_state, interactive_state],
|
|
outputs=[template_frame, image_state, interactive_state]
|
|
)
|
|
|
|
|
|
add_mask_button.click(
|
|
fn=add_multi_mask,
|
|
inputs=[image_state, interactive_state, mask_dropdown],
|
|
outputs=[interactive_state, mask_dropdown, template_frame, click_state]
|
|
)
|
|
|
|
remove_mask_button.click(
|
|
fn=remove_multi_mask,
|
|
inputs=[interactive_state, mask_dropdown],
|
|
outputs=[interactive_state, mask_dropdown]
|
|
)
|
|
|
|
|
|
matting_button.click(
|
|
fn=image_matting,
|
|
inputs=[image_state, interactive_state, mask_dropdown, erode_kernel_size, dilate_kernel_size, image_selection_slider],
|
|
outputs=[foreground_image_output, export_image_btn]
|
|
)
|
|
|
|
|
|
|
|
|