|
|
|
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from PIL import Image
|
|
import torch
|
|
|
|
def convert_to_numpy(image):
|
|
if isinstance(image, Image.Image):
|
|
image = np.array(image)
|
|
elif isinstance(image, torch.Tensor):
|
|
image = image.detach().cpu().numpy()
|
|
elif isinstance(image, np.ndarray):
|
|
image = image.copy()
|
|
else:
|
|
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
|
|
return image
|
|
|
|
class GrayAnnotator:
|
|
def __init__(self, cfg):
|
|
pass
|
|
def forward(self, image):
|
|
image = convert_to_numpy(image)
|
|
gray_map = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
return gray_map[..., None].repeat(3, axis=2)
|
|
|
|
|
|
class GrayVideoAnnotator(GrayAnnotator):
|
|
def forward(self, frames):
|
|
ret_frames = []
|
|
for frame in frames:
|
|
anno_frame = super().forward(np.array(frame))
|
|
ret_frames.append(anno_frame)
|
|
return ret_frames
|
|
|