|
|
|
import math
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional, Union
|
|
import os
|
|
import json
|
|
import glob
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.models.embeddings import PixArtAlphaTextProjection
|
|
from diffusers.models.modeling_utils import ModelMixin
|
|
from diffusers.models.normalization import AdaLayerNormSingle
|
|
from diffusers.utils import BaseOutput, is_torch_version
|
|
from diffusers.utils import logging
|
|
from torch import nn
|
|
from safetensors import safe_open
|
|
from ltx_video.models.transformers.attention import BasicTransformerBlock, reshape_hidden_states, restore_hidden_states_shape
|
|
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
|
|
|
from ltx_video.utils.diffusers_config_mapping import (
|
|
diffusers_and_ours_config_mapping,
|
|
make_hashable_key,
|
|
TRANSFORMER_KEYS_RENAME_DICT,
|
|
)
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class Transformer3DModelOutput(BaseOutput):
|
|
"""
|
|
The output of [`Transformer2DModel`].
|
|
|
|
Args:
|
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
|
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
|
distributions for the unnoised latent pixels.
|
|
"""
|
|
|
|
sample: torch.FloatTensor
|
|
|
|
|
|
class Transformer3DModel(ModelMixin, ConfigMixin):
|
|
_supports_gradient_checkpointing = True
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
num_attention_heads: int = 16,
|
|
attention_head_dim: int = 88,
|
|
in_channels: Optional[int] = None,
|
|
out_channels: Optional[int] = None,
|
|
num_layers: int = 1,
|
|
dropout: float = 0.0,
|
|
norm_num_groups: int = 32,
|
|
cross_attention_dim: Optional[int] = None,
|
|
attention_bias: bool = False,
|
|
num_vector_embeds: Optional[int] = None,
|
|
activation_fn: str = "geglu",
|
|
num_embeds_ada_norm: Optional[int] = None,
|
|
use_linear_projection: bool = False,
|
|
only_cross_attention: bool = False,
|
|
double_self_attention: bool = False,
|
|
upcast_attention: bool = False,
|
|
adaptive_norm: str = "single_scale_shift",
|
|
standardization_norm: str = "layer_norm",
|
|
norm_elementwise_affine: bool = True,
|
|
norm_eps: float = 1e-5,
|
|
attention_type: str = "default",
|
|
caption_channels: int = None,
|
|
use_tpu_flash_attention: bool = False,
|
|
qk_norm: Optional[str] = None,
|
|
positional_embedding_type: str = "rope",
|
|
positional_embedding_theta: Optional[float] = None,
|
|
positional_embedding_max_pos: Optional[List[int]] = None,
|
|
timestep_scale_multiplier: Optional[float] = None,
|
|
causal_temporal_positioning: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.use_tpu_flash_attention = (
|
|
use_tpu_flash_attention
|
|
)
|
|
self.use_linear_projection = use_linear_projection
|
|
self.num_attention_heads = num_attention_heads
|
|
self.attention_head_dim = attention_head_dim
|
|
inner_dim = num_attention_heads * attention_head_dim
|
|
self.inner_dim = inner_dim
|
|
self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True)
|
|
self.positional_embedding_type = positional_embedding_type
|
|
self.positional_embedding_theta = positional_embedding_theta
|
|
self.positional_embedding_max_pos = positional_embedding_max_pos
|
|
self.use_rope = self.positional_embedding_type == "rope"
|
|
self.timestep_scale_multiplier = timestep_scale_multiplier
|
|
|
|
if self.positional_embedding_type == "absolute":
|
|
raise ValueError("Absolute positional embedding is no longer supported")
|
|
elif self.positional_embedding_type == "rope":
|
|
if positional_embedding_theta is None:
|
|
raise ValueError(
|
|
"If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined"
|
|
)
|
|
if positional_embedding_max_pos is None:
|
|
raise ValueError(
|
|
"If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined"
|
|
)
|
|
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
[
|
|
BasicTransformerBlock(
|
|
inner_dim,
|
|
num_attention_heads,
|
|
attention_head_dim,
|
|
dropout=dropout,
|
|
cross_attention_dim=cross_attention_dim,
|
|
activation_fn=activation_fn,
|
|
num_embeds_ada_norm=num_embeds_ada_norm,
|
|
attention_bias=attention_bias,
|
|
only_cross_attention=only_cross_attention,
|
|
double_self_attention=double_self_attention,
|
|
upcast_attention=upcast_attention,
|
|
adaptive_norm=adaptive_norm,
|
|
standardization_norm=standardization_norm,
|
|
norm_elementwise_affine=norm_elementwise_affine,
|
|
norm_eps=norm_eps,
|
|
attention_type=attention_type,
|
|
use_tpu_flash_attention=use_tpu_flash_attention,
|
|
qk_norm=qk_norm,
|
|
use_rope=self.use_rope,
|
|
)
|
|
for d in range(num_layers)
|
|
]
|
|
)
|
|
|
|
|
|
self.out_channels = in_channels if out_channels is None else out_channels
|
|
self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6)
|
|
self.scale_shift_table = nn.Parameter(
|
|
torch.randn(2, inner_dim) / inner_dim**0.5
|
|
)
|
|
self.proj_out = nn.Linear(inner_dim, self.out_channels)
|
|
|
|
self.adaln_single = AdaLayerNormSingle(
|
|
inner_dim, use_additional_conditions=False
|
|
)
|
|
if adaptive_norm == "single_scale":
|
|
self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True)
|
|
|
|
self.caption_projection = None
|
|
if caption_channels is not None:
|
|
self.caption_projection = PixArtAlphaTextProjection(
|
|
in_features=caption_channels, hidden_size=inner_dim
|
|
)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def set_use_tpu_flash_attention(self):
|
|
r"""
|
|
Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU
|
|
attention kernel.
|
|
"""
|
|
logger.info("ENABLE TPU FLASH ATTENTION -> TRUE")
|
|
self.use_tpu_flash_attention = True
|
|
|
|
for block in self.transformer_blocks:
|
|
block.set_use_tpu_flash_attention()
|
|
|
|
def create_skip_layer_mask(
|
|
self,
|
|
batch_size: int,
|
|
num_conds: int,
|
|
ptb_index: int,
|
|
skip_block_list: Optional[List[int]] = None,
|
|
):
|
|
if skip_block_list is None or len(skip_block_list) == 0:
|
|
return None
|
|
num_layers = len(self.transformer_blocks)
|
|
mask = torch.ones(
|
|
(num_layers, batch_size * num_conds), device=self.device, dtype=self.dtype
|
|
)
|
|
for block_idx in skip_block_list:
|
|
mask[block_idx, ptb_index::num_conds] = 0
|
|
return mask
|
|
|
|
def _set_gradient_checkpointing(self, module, value=False):
|
|
if hasattr(module, "gradient_checkpointing"):
|
|
module.gradient_checkpointing = value
|
|
|
|
def get_fractional_positions(self, indices_grid):
|
|
fractional_positions = torch.stack(
|
|
[
|
|
indices_grid[:, i] / self.positional_embedding_max_pos[i]
|
|
for i in range(3)
|
|
],
|
|
dim=-1,
|
|
)
|
|
return fractional_positions
|
|
|
|
def precompute_freqs_cis(self, indices_grid, spacing="exp"):
|
|
dtype = torch.float32
|
|
dim = self.inner_dim
|
|
theta = self.positional_embedding_theta
|
|
|
|
fractional_positions = self.get_fractional_positions(indices_grid)
|
|
|
|
start = 1
|
|
end = theta
|
|
device = fractional_positions.device
|
|
if spacing == "exp":
|
|
indices = theta ** (
|
|
torch.linspace(
|
|
math.log(start, theta),
|
|
math.log(end, theta),
|
|
dim // 6,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
)
|
|
indices = indices.to(dtype=dtype)
|
|
elif spacing == "exp_2":
|
|
indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim)
|
|
indices = indices.to(dtype=dtype)
|
|
elif spacing == "linear":
|
|
indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype)
|
|
elif spacing == "sqrt":
|
|
indices = torch.linspace(
|
|
start**2, end**2, dim // 6, device=device, dtype=dtype
|
|
).sqrt()
|
|
|
|
indices = indices * math.pi / 2
|
|
|
|
if spacing == "exp_2":
|
|
freqs = (
|
|
(indices * fractional_positions.unsqueeze(-1))
|
|
.transpose(-1, -2)
|
|
.flatten(2)
|
|
)
|
|
else:
|
|
freqs = (
|
|
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
|
|
.transpose(-1, -2)
|
|
.flatten(2)
|
|
)
|
|
|
|
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
|
|
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
|
|
if dim % 6 != 0:
|
|
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
|
|
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
|
|
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
|
|
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
|
|
return cos_freq.to(self.dtype), sin_freq.to(self.dtype)
|
|
|
|
def load_state_dict(
|
|
self,
|
|
state_dict: Dict,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
if any([key.startswith("model.diffusion_model.") for key in state_dict.keys()]):
|
|
state_dict = {
|
|
key.replace("model.diffusion_model.", ""): value
|
|
for key, value in state_dict.items()
|
|
if key.startswith("model.diffusion_model.")
|
|
}
|
|
return super().load_state_dict(state_dict, **kwargs)
|
|
|
|
@classmethod
|
|
def from_pretrained(
|
|
cls,
|
|
pretrained_model_path: Optional[Union[str, os.PathLike]],
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
pretrained_model_path = Path(pretrained_model_path)
|
|
if pretrained_model_path.is_dir():
|
|
config_path = pretrained_model_path / "transformer" / "config.json"
|
|
with open(config_path, "r") as f:
|
|
config = make_hashable_key(json.load(f))
|
|
|
|
assert config in diffusers_and_ours_config_mapping, (
|
|
"Provided diffusers checkpoint config for transformer is not suppported. "
|
|
"We only support diffusers configs found in Lightricks/LTX-Video."
|
|
)
|
|
|
|
config = diffusers_and_ours_config_mapping[config]
|
|
state_dict = {}
|
|
ckpt_paths = (
|
|
pretrained_model_path
|
|
/ "transformer"
|
|
/ "diffusion_pytorch_model*.safetensors"
|
|
)
|
|
dict_list = glob.glob(str(ckpt_paths))
|
|
for dict_path in dict_list:
|
|
part_dict = {}
|
|
with safe_open(dict_path, framework="pt", device="cpu") as f:
|
|
for k in f.keys():
|
|
part_dict[k] = f.get_tensor(k)
|
|
state_dict.update(part_dict)
|
|
|
|
for key in list(state_dict.keys()):
|
|
new_key = key
|
|
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
|
|
new_key = new_key.replace(replace_key, rename_key)
|
|
state_dict[new_key] = state_dict.pop(key)
|
|
|
|
with torch.device("meta"):
|
|
transformer = cls.from_config(config)
|
|
transformer.load_state_dict(state_dict, assign=True, strict=True)
|
|
elif pretrained_model_path.is_file() and str(pretrained_model_path).endswith(
|
|
".safetensors"
|
|
):
|
|
comfy_single_file_state_dict = {}
|
|
with safe_open(pretrained_model_path, framework="pt", device="cpu") as f:
|
|
metadata = f.metadata()
|
|
for k in f.keys():
|
|
comfy_single_file_state_dict[k] = f.get_tensor(k)
|
|
configs = json.loads(metadata["config"])
|
|
transformer_config = configs["transformer"]
|
|
with torch.device("meta"):
|
|
transformer = Transformer3DModel.from_config(transformer_config)
|
|
transformer.load_state_dict(comfy_single_file_state_dict, assign=True)
|
|
return transformer
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
freqs_cis: list,
|
|
encoder_hidden_states: Optional[torch.Tensor] = None,
|
|
timestep: Optional[torch.LongTensor] = None,
|
|
class_labels: Optional[torch.LongTensor] = None,
|
|
cross_attention_kwargs: Dict[str, Any] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
encoder_attention_mask: Optional[torch.Tensor] = None,
|
|
skip_layer_mask: Optional[torch.Tensor] = None,
|
|
skip_layer_strategy: Optional[SkipLayerStrategy] = None,
|
|
latent_shape = None,
|
|
joint_pass = True,
|
|
ltxv_model = None,
|
|
mixed = False,
|
|
return_dict: bool = True,
|
|
):
|
|
"""
|
|
The [`Transformer2DModel`] forward method.
|
|
|
|
Args:
|
|
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
|
Input `hidden_states`.
|
|
indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`):
|
|
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
|
self-attention.
|
|
timestep ( `torch.LongTensor`, *optional*):
|
|
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
|
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
|
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
|
`AdaLayerZeroNorm`.
|
|
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
attention_mask ( `torch.Tensor`, *optional*):
|
|
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
|
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
|
negative values to the attention scores corresponding to "discard" tokens.
|
|
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
|
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
|
|
|
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
|
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
|
|
|
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
|
above. This bias will be added to the cross-attention scores.
|
|
skip_layer_mask ( `torch.Tensor`, *optional*):
|
|
A mask of shape `(num_layers, batch)` that indicates which layers to skip. `0` at position
|
|
`layer, batch_idx` indicates that the layer should be skipped for the corresponding batch index.
|
|
skip_layer_strategy ( `SkipLayerStrategy`, *optional*, defaults to `None`):
|
|
Controls which layers are skipped when calculating a perturbed latent for spatiotemporal guidance.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
|
tuple.
|
|
|
|
Returns:
|
|
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
|
`tuple` where the first element is the sample tensor.
|
|
"""
|
|
|
|
if not self.use_tpu_flash_attention:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None and attention_mask.ndim == 2:
|
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
|
attention_mask = attention_mask.unsqueeze(1)
|
|
|
|
|
|
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
|
encoder_attention_mask = (
|
|
1 - encoder_attention_mask.to(hidden_states.dtype)
|
|
) * -10000.0
|
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
|
|
|
|
|
hidden_states = self.patchify_proj(hidden_states)
|
|
|
|
if self.timestep_scale_multiplier:
|
|
timestep = self.timestep_scale_multiplier * timestep
|
|
|
|
if timestep.shape[-1] > 1:
|
|
timestep = timestep.reshape(timestep.shape[0], -1, latent_shape[-2] * latent_shape[-1] )
|
|
timestep = timestep[:, :, 0]
|
|
|
|
batch_size = hidden_states.shape[0]
|
|
timestep, embedded_timestep = self.adaln_single(
|
|
timestep.flatten(),
|
|
{"resolution": None, "aspect_ratio": None},
|
|
batch_size=batch_size,
|
|
hidden_dtype=hidden_states.dtype,
|
|
)
|
|
|
|
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
|
|
embedded_timestep = embedded_timestep.view(
|
|
batch_size, -1, embedded_timestep.shape[-1]
|
|
)
|
|
if mixed:
|
|
timestep = timestep.float()
|
|
embedded_timestep = embedded_timestep.float()
|
|
hidden_states = hidden_states.float()
|
|
|
|
|
|
|
|
if self.caption_projection is not None:
|
|
batch_size = hidden_states.shape[0]
|
|
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
|
encoder_hidden_states = encoder_hidden_states.view(
|
|
batch_size, -1, hidden_states.shape[-1]
|
|
)
|
|
|
|
|
|
if joint_pass:
|
|
for block_idx, block in enumerate(self.transformer_blocks):
|
|
hidden_states = block(
|
|
hidden_states,
|
|
freqs_cis=freqs_cis,
|
|
attention_mask=attention_mask,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_attention_mask=encoder_attention_mask,
|
|
timestep=timestep,
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
class_labels=class_labels,
|
|
skip_layer_mask= None if skip_layer_mask is None else skip_layer_mask[block_idx],
|
|
skip_layer_strategy=skip_layer_strategy,
|
|
)
|
|
if ltxv_model._interrupt:
|
|
return [None]
|
|
|
|
else:
|
|
for block_idx, block in enumerate(self.transformer_blocks):
|
|
for i, (one_hidden_states, one_encoder_hidden_states, one_encoder_attention_mask,one_timestep) in enumerate(zip(hidden_states, encoder_hidden_states,encoder_attention_mask,timestep)):
|
|
hidden_states[i][...] = block(
|
|
one_hidden_states.unsqueeze(0),
|
|
freqs_cis=freqs_cis,
|
|
attention_mask=attention_mask,
|
|
encoder_hidden_states=one_encoder_hidden_states.unsqueeze(0),
|
|
encoder_attention_mask=one_encoder_attention_mask.unsqueeze(0),
|
|
timestep=one_timestep.unsqueeze(0),
|
|
cross_attention_kwargs=cross_attention_kwargs,
|
|
class_labels=class_labels,
|
|
skip_layer_mask= None if skip_layer_mask is None else skip_layer_mask[block_idx, i],
|
|
skip_layer_strategy=skip_layer_strategy,
|
|
)
|
|
if ltxv_model._interrupt:
|
|
return [None]
|
|
|
|
|
|
scale_shift_values = (
|
|
self.scale_shift_table[None, None] + embedded_timestep[:, :, None]
|
|
)
|
|
shift, scale = scale_shift_values[:, :, 0].unsqueeze(-2), scale_shift_values[:, :, 1].unsqueeze(-2)
|
|
hidden_states = self.norm_out(hidden_states)
|
|
|
|
|
|
|
|
hidden_states = reshape_hidden_states(hidden_states, scale.shape[1])
|
|
|
|
hidden_states *= 1 + scale
|
|
hidden_states += shift
|
|
hidden_states = restore_hidden_states_shape(hidden_states)
|
|
hidden_states = self.proj_out(hidden_states)
|
|
if not return_dict:
|
|
return (hidden_states,)
|
|
|
|
return Transformer3DModelOutput(sample=hidden_states)
|
|
|