|
import json
|
|
import os
|
|
from functools import partial
|
|
from types import SimpleNamespace
|
|
from typing import Any, Mapping, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from einops import rearrange
|
|
from torch import nn
|
|
from torch.nn import functional
|
|
|
|
from diffusers.utils import logging
|
|
|
|
from ltx_video.utils.torch_utils import Identity
|
|
from ltx_video.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd
|
|
from ltx_video.models.autoencoders.pixel_norm import PixelNorm
|
|
from ltx_video.models.autoencoders.vae import AutoencoderKLWrapper
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class VideoAutoencoder(AutoencoderKLWrapper):
|
|
@classmethod
|
|
def from_pretrained(
|
|
cls,
|
|
pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
config_local_path = pretrained_model_name_or_path / "config.json"
|
|
config = cls.load_config(config_local_path, **kwargs)
|
|
video_vae = cls.from_config(config)
|
|
video_vae.to(kwargs["torch_dtype"])
|
|
|
|
model_local_path = pretrained_model_name_or_path / "autoencoder.pth"
|
|
ckpt_state_dict = torch.load(model_local_path)
|
|
video_vae.load_state_dict(ckpt_state_dict)
|
|
|
|
statistics_local_path = (
|
|
pretrained_model_name_or_path / "per_channel_statistics.json"
|
|
)
|
|
if statistics_local_path.exists():
|
|
with open(statistics_local_path, "r") as file:
|
|
data = json.load(file)
|
|
transposed_data = list(zip(*data["data"]))
|
|
data_dict = {
|
|
col: torch.tensor(vals)
|
|
for col, vals in zip(data["columns"], transposed_data)
|
|
}
|
|
video_vae.register_buffer("std_of_means", data_dict["std-of-means"])
|
|
video_vae.register_buffer(
|
|
"mean_of_means",
|
|
data_dict.get(
|
|
"mean-of-means", torch.zeros_like(data_dict["std-of-means"])
|
|
),
|
|
)
|
|
|
|
return video_vae
|
|
|
|
@staticmethod
|
|
def from_config(config):
|
|
assert (
|
|
config["_class_name"] == "VideoAutoencoder"
|
|
), "config must have _class_name=VideoAutoencoder"
|
|
if isinstance(config["dims"], list):
|
|
config["dims"] = tuple(config["dims"])
|
|
|
|
assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)"
|
|
|
|
double_z = config.get("double_z", True)
|
|
latent_log_var = config.get(
|
|
"latent_log_var", "per_channel" if double_z else "none"
|
|
)
|
|
use_quant_conv = config.get("use_quant_conv", True)
|
|
|
|
if use_quant_conv and latent_log_var == "uniform":
|
|
raise ValueError("uniform latent_log_var requires use_quant_conv=False")
|
|
|
|
encoder = Encoder(
|
|
dims=config["dims"],
|
|
in_channels=config.get("in_channels", 3),
|
|
out_channels=config["latent_channels"],
|
|
block_out_channels=config["block_out_channels"],
|
|
patch_size=config.get("patch_size", 1),
|
|
latent_log_var=latent_log_var,
|
|
norm_layer=config.get("norm_layer", "group_norm"),
|
|
patch_size_t=config.get("patch_size_t", config.get("patch_size", 1)),
|
|
add_channel_padding=config.get("add_channel_padding", False),
|
|
)
|
|
|
|
decoder = Decoder(
|
|
dims=config["dims"],
|
|
in_channels=config["latent_channels"],
|
|
out_channels=config.get("out_channels", 3),
|
|
block_out_channels=config["block_out_channels"],
|
|
patch_size=config.get("patch_size", 1),
|
|
norm_layer=config.get("norm_layer", "group_norm"),
|
|
patch_size_t=config.get("patch_size_t", config.get("patch_size", 1)),
|
|
add_channel_padding=config.get("add_channel_padding", False),
|
|
)
|
|
|
|
dims = config["dims"]
|
|
return VideoAutoencoder(
|
|
encoder=encoder,
|
|
decoder=decoder,
|
|
latent_channels=config["latent_channels"],
|
|
dims=dims,
|
|
use_quant_conv=use_quant_conv,
|
|
)
|
|
|
|
@property
|
|
def config(self):
|
|
return SimpleNamespace(
|
|
_class_name="VideoAutoencoder",
|
|
dims=self.dims,
|
|
in_channels=self.encoder.conv_in.in_channels
|
|
// (self.encoder.patch_size_t * self.encoder.patch_size**2),
|
|
out_channels=self.decoder.conv_out.out_channels
|
|
// (self.decoder.patch_size_t * self.decoder.patch_size**2),
|
|
latent_channels=self.decoder.conv_in.in_channels,
|
|
block_out_channels=[
|
|
self.encoder.down_blocks[i].res_blocks[-1].conv1.out_channels
|
|
for i in range(len(self.encoder.down_blocks))
|
|
],
|
|
scaling_factor=1.0,
|
|
norm_layer=self.encoder.norm_layer,
|
|
patch_size=self.encoder.patch_size,
|
|
latent_log_var=self.encoder.latent_log_var,
|
|
use_quant_conv=self.use_quant_conv,
|
|
patch_size_t=self.encoder.patch_size_t,
|
|
add_channel_padding=self.encoder.add_channel_padding,
|
|
)
|
|
|
|
@property
|
|
def is_video_supported(self):
|
|
"""
|
|
Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images.
|
|
"""
|
|
return self.dims != 2
|
|
|
|
@property
|
|
def downscale_factor(self):
|
|
return self.encoder.downsample_factor
|
|
|
|
def to_json_string(self) -> str:
|
|
import json
|
|
|
|
return json.dumps(self.config.__dict__)
|
|
|
|
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
|
|
model_keys = set(name for name, _ in self.named_parameters())
|
|
|
|
key_mapping = {
|
|
".resnets.": ".res_blocks.",
|
|
"downsamplers.0": "downsample",
|
|
"upsamplers.0": "upsample",
|
|
}
|
|
|
|
converted_state_dict = {}
|
|
for key, value in state_dict.items():
|
|
for k, v in key_mapping.items():
|
|
key = key.replace(k, v)
|
|
|
|
if "norm" in key and key not in model_keys:
|
|
logger.info(
|
|
f"Removing key {key} from state_dict as it is not present in the model"
|
|
)
|
|
continue
|
|
|
|
converted_state_dict[key] = value
|
|
|
|
super().load_state_dict(converted_state_dict, strict=strict)
|
|
|
|
def last_layer(self):
|
|
if hasattr(self.decoder, "conv_out"):
|
|
if isinstance(self.decoder.conv_out, nn.Sequential):
|
|
last_layer = self.decoder.conv_out[-1]
|
|
else:
|
|
last_layer = self.decoder.conv_out
|
|
else:
|
|
last_layer = self.decoder.layers[-1]
|
|
return last_layer
|
|
|
|
|
|
class Encoder(nn.Module):
|
|
r"""
|
|
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
|
|
|
Args:
|
|
in_channels (`int`, *optional*, defaults to 3):
|
|
The number of input channels.
|
|
out_channels (`int`, *optional*, defaults to 3):
|
|
The number of output channels.
|
|
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
|
The number of output channels for each block.
|
|
layers_per_block (`int`, *optional*, defaults to 2):
|
|
The number of layers per block.
|
|
norm_num_groups (`int`, *optional*, defaults to 32):
|
|
The number of groups for normalization.
|
|
patch_size (`int`, *optional*, defaults to 1):
|
|
The patch size to use. Should be a power of 2.
|
|
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
|
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
|
latent_log_var (`str`, *optional*, defaults to `per_channel`):
|
|
The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dims: Union[int, Tuple[int, int]] = 3,
|
|
in_channels: int = 3,
|
|
out_channels: int = 3,
|
|
block_out_channels: Tuple[int, ...] = (64,),
|
|
layers_per_block: int = 2,
|
|
norm_num_groups: int = 32,
|
|
patch_size: Union[int, Tuple[int]] = 1,
|
|
norm_layer: str = "group_norm",
|
|
latent_log_var: str = "per_channel",
|
|
patch_size_t: Optional[int] = None,
|
|
add_channel_padding: Optional[bool] = False,
|
|
):
|
|
super().__init__()
|
|
self.patch_size = patch_size
|
|
self.patch_size_t = patch_size_t if patch_size_t is not None else patch_size
|
|
self.add_channel_padding = add_channel_padding
|
|
self.layers_per_block = layers_per_block
|
|
self.norm_layer = norm_layer
|
|
self.latent_channels = out_channels
|
|
self.latent_log_var = latent_log_var
|
|
if add_channel_padding:
|
|
in_channels = in_channels * self.patch_size**3
|
|
else:
|
|
in_channels = in_channels * self.patch_size_t * self.patch_size**2
|
|
self.in_channels = in_channels
|
|
output_channel = block_out_channels[0]
|
|
|
|
self.conv_in = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=in_channels,
|
|
out_channels=output_channel,
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
)
|
|
|
|
self.down_blocks = nn.ModuleList([])
|
|
|
|
for i in range(len(block_out_channels)):
|
|
input_channel = output_channel
|
|
output_channel = block_out_channels[i]
|
|
is_final_block = i == len(block_out_channels) - 1
|
|
|
|
down_block = DownEncoderBlock3D(
|
|
dims=dims,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
num_layers=self.layers_per_block,
|
|
add_downsample=not is_final_block and 2**i >= patch_size,
|
|
resnet_eps=1e-6,
|
|
downsample_padding=0,
|
|
resnet_groups=norm_num_groups,
|
|
norm_layer=norm_layer,
|
|
)
|
|
self.down_blocks.append(down_block)
|
|
|
|
self.mid_block = UNetMidBlock3D(
|
|
dims=dims,
|
|
in_channels=block_out_channels[-1],
|
|
num_layers=self.layers_per_block,
|
|
resnet_eps=1e-6,
|
|
resnet_groups=norm_num_groups,
|
|
norm_layer=norm_layer,
|
|
)
|
|
|
|
|
|
if norm_layer == "group_norm":
|
|
self.conv_norm_out = nn.GroupNorm(
|
|
num_channels=block_out_channels[-1],
|
|
num_groups=norm_num_groups,
|
|
eps=1e-6,
|
|
)
|
|
elif norm_layer == "pixel_norm":
|
|
self.conv_norm_out = PixelNorm()
|
|
self.conv_act = nn.SiLU()
|
|
|
|
conv_out_channels = out_channels
|
|
if latent_log_var == "per_channel":
|
|
conv_out_channels *= 2
|
|
elif latent_log_var == "uniform":
|
|
conv_out_channels += 1
|
|
elif latent_log_var != "none":
|
|
raise ValueError(f"Invalid latent_log_var: {latent_log_var}")
|
|
self.conv_out = make_conv_nd(
|
|
dims, block_out_channels[-1], conv_out_channels, 3, padding=1
|
|
)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
@property
|
|
def downscale_factor(self):
|
|
return (
|
|
2
|
|
** len(
|
|
[
|
|
block
|
|
for block in self.down_blocks
|
|
if isinstance(block.downsample, Downsample3D)
|
|
]
|
|
)
|
|
* self.patch_size
|
|
)
|
|
|
|
def forward(
|
|
self, sample: torch.FloatTensor, return_features=False
|
|
) -> torch.FloatTensor:
|
|
r"""The forward method of the `Encoder` class."""
|
|
|
|
downsample_in_time = sample.shape[2] != 1
|
|
|
|
|
|
patch_size_t = self.patch_size_t if downsample_in_time else 1
|
|
sample = patchify(
|
|
sample,
|
|
patch_size_hw=self.patch_size,
|
|
patch_size_t=patch_size_t,
|
|
add_channel_padding=self.add_channel_padding,
|
|
)
|
|
|
|
sample = self.conv_in(sample)
|
|
|
|
checkpoint_fn = (
|
|
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
|
if self.gradient_checkpointing and self.training
|
|
else lambda x: x
|
|
)
|
|
|
|
if return_features:
|
|
features = []
|
|
for down_block in self.down_blocks:
|
|
sample = checkpoint_fn(down_block)(
|
|
sample, downsample_in_time=downsample_in_time
|
|
)
|
|
if return_features:
|
|
features.append(sample)
|
|
|
|
sample = checkpoint_fn(self.mid_block)(sample)
|
|
|
|
|
|
sample = self.conv_norm_out(sample)
|
|
sample = self.conv_act(sample)
|
|
sample = self.conv_out(sample)
|
|
|
|
if self.latent_log_var == "uniform":
|
|
last_channel = sample[:, -1:, ...]
|
|
num_dims = sample.dim()
|
|
|
|
if num_dims == 4:
|
|
|
|
repeated_last_channel = last_channel.repeat(
|
|
1, sample.shape[1] - 2, 1, 1
|
|
)
|
|
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
|
elif num_dims == 5:
|
|
|
|
repeated_last_channel = last_channel.repeat(
|
|
1, sample.shape[1] - 2, 1, 1, 1
|
|
)
|
|
sample = torch.cat([sample, repeated_last_channel], dim=1)
|
|
else:
|
|
raise ValueError(f"Invalid input shape: {sample.shape}")
|
|
|
|
if return_features:
|
|
features.append(sample[:, : self.latent_channels, ...])
|
|
return sample, features
|
|
return sample
|
|
|
|
|
|
class Decoder(nn.Module):
|
|
r"""
|
|
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
|
|
|
Args:
|
|
in_channels (`int`, *optional*, defaults to 3):
|
|
The number of input channels.
|
|
out_channels (`int`, *optional*, defaults to 3):
|
|
The number of output channels.
|
|
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
|
The number of output channels for each block.
|
|
layers_per_block (`int`, *optional*, defaults to 2):
|
|
The number of layers per block.
|
|
norm_num_groups (`int`, *optional*, defaults to 32):
|
|
The number of groups for normalization.
|
|
patch_size (`int`, *optional*, defaults to 1):
|
|
The patch size to use. Should be a power of 2.
|
|
norm_layer (`str`, *optional*, defaults to `group_norm`):
|
|
The normalization layer to use. Can be either `group_norm` or `pixel_norm`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dims,
|
|
in_channels: int = 3,
|
|
out_channels: int = 3,
|
|
block_out_channels: Tuple[int, ...] = (64,),
|
|
layers_per_block: int = 2,
|
|
norm_num_groups: int = 32,
|
|
patch_size: int = 1,
|
|
norm_layer: str = "group_norm",
|
|
patch_size_t: Optional[int] = None,
|
|
add_channel_padding: Optional[bool] = False,
|
|
):
|
|
super().__init__()
|
|
self.patch_size = patch_size
|
|
self.patch_size_t = patch_size_t if patch_size_t is not None else patch_size
|
|
self.add_channel_padding = add_channel_padding
|
|
self.layers_per_block = layers_per_block
|
|
if add_channel_padding:
|
|
out_channels = out_channels * self.patch_size**3
|
|
else:
|
|
out_channels = out_channels * self.patch_size_t * self.patch_size**2
|
|
self.out_channels = out_channels
|
|
|
|
self.conv_in = make_conv_nd(
|
|
dims,
|
|
in_channels,
|
|
block_out_channels[-1],
|
|
kernel_size=3,
|
|
stride=1,
|
|
padding=1,
|
|
)
|
|
|
|
self.mid_block = None
|
|
self.up_blocks = nn.ModuleList([])
|
|
|
|
self.mid_block = UNetMidBlock3D(
|
|
dims=dims,
|
|
in_channels=block_out_channels[-1],
|
|
num_layers=self.layers_per_block,
|
|
resnet_eps=1e-6,
|
|
resnet_groups=norm_num_groups,
|
|
norm_layer=norm_layer,
|
|
)
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels))
|
|
output_channel = reversed_block_out_channels[0]
|
|
for i in range(len(reversed_block_out_channels)):
|
|
prev_output_channel = output_channel
|
|
output_channel = reversed_block_out_channels[i]
|
|
|
|
is_final_block = i == len(block_out_channels) - 1
|
|
|
|
up_block = UpDecoderBlock3D(
|
|
dims=dims,
|
|
num_layers=self.layers_per_block + 1,
|
|
in_channels=prev_output_channel,
|
|
out_channels=output_channel,
|
|
add_upsample=not is_final_block
|
|
and 2 ** (len(block_out_channels) - i - 1) > patch_size,
|
|
resnet_eps=1e-6,
|
|
resnet_groups=norm_num_groups,
|
|
norm_layer=norm_layer,
|
|
)
|
|
self.up_blocks.append(up_block)
|
|
|
|
if norm_layer == "group_norm":
|
|
self.conv_norm_out = nn.GroupNorm(
|
|
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6
|
|
)
|
|
elif norm_layer == "pixel_norm":
|
|
self.conv_norm_out = PixelNorm()
|
|
|
|
self.conv_act = nn.SiLU()
|
|
self.conv_out = make_conv_nd(
|
|
dims, block_out_channels[0], out_channels, 3, padding=1
|
|
)
|
|
|
|
self.gradient_checkpointing = False
|
|
|
|
def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor:
|
|
r"""The forward method of the `Decoder` class."""
|
|
assert target_shape is not None, "target_shape must be provided"
|
|
upsample_in_time = sample.shape[2] < target_shape[2]
|
|
|
|
sample = self.conv_in(sample)
|
|
|
|
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
|
|
|
checkpoint_fn = (
|
|
partial(torch.utils.checkpoint.checkpoint, use_reentrant=False)
|
|
if self.gradient_checkpointing and self.training
|
|
else lambda x: x
|
|
)
|
|
|
|
sample = checkpoint_fn(self.mid_block)(sample)
|
|
sample = sample.to(upscale_dtype)
|
|
|
|
for up_block in self.up_blocks:
|
|
sample = checkpoint_fn(up_block)(sample, upsample_in_time=upsample_in_time)
|
|
|
|
|
|
sample = self.conv_norm_out(sample)
|
|
sample = self.conv_act(sample)
|
|
sample = self.conv_out(sample)
|
|
|
|
|
|
patch_size_t = self.patch_size_t if upsample_in_time else 1
|
|
sample = unpatchify(
|
|
sample,
|
|
patch_size_hw=self.patch_size,
|
|
patch_size_t=patch_size_t,
|
|
add_channel_padding=self.add_channel_padding,
|
|
)
|
|
|
|
return sample
|
|
|
|
|
|
class DownEncoderBlock3D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dims: Union[int, Tuple[int, int]],
|
|
in_channels: int,
|
|
out_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_groups: int = 32,
|
|
add_downsample: bool = True,
|
|
downsample_padding: int = 1,
|
|
norm_layer: str = "group_norm",
|
|
):
|
|
super().__init__()
|
|
res_blocks = []
|
|
|
|
for i in range(num_layers):
|
|
in_channels = in_channels if i == 0 else out_channels
|
|
res_blocks.append(
|
|
ResnetBlock3D(
|
|
dims=dims,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
norm_layer=norm_layer,
|
|
)
|
|
)
|
|
|
|
self.res_blocks = nn.ModuleList(res_blocks)
|
|
|
|
if add_downsample:
|
|
self.downsample = Downsample3D(
|
|
dims,
|
|
out_channels,
|
|
out_channels=out_channels,
|
|
padding=downsample_padding,
|
|
)
|
|
else:
|
|
self.downsample = Identity()
|
|
|
|
def forward(
|
|
self, hidden_states: torch.FloatTensor, downsample_in_time
|
|
) -> torch.FloatTensor:
|
|
for resnet in self.res_blocks:
|
|
hidden_states = resnet(hidden_states)
|
|
|
|
hidden_states = self.downsample(
|
|
hidden_states, downsample_in_time=downsample_in_time
|
|
)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class UNetMidBlock3D(nn.Module):
|
|
"""
|
|
A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks.
|
|
|
|
Args:
|
|
in_channels (`int`): The number of input channels.
|
|
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
|
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
|
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
|
resnet_groups (`int`, *optional*, defaults to 32):
|
|
The number of groups to use in the group normalization layers of the resnet blocks.
|
|
|
|
Returns:
|
|
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
|
in_channels, height, width)`.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dims: Union[int, Tuple[int, int]],
|
|
in_channels: int,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_groups: int = 32,
|
|
norm_layer: str = "group_norm",
|
|
):
|
|
super().__init__()
|
|
resnet_groups = (
|
|
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
|
)
|
|
|
|
self.res_blocks = nn.ModuleList(
|
|
[
|
|
ResnetBlock3D(
|
|
dims=dims,
|
|
in_channels=in_channels,
|
|
out_channels=in_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
norm_layer=norm_layer,
|
|
)
|
|
for _ in range(num_layers)
|
|
]
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
|
for resnet in self.res_blocks:
|
|
hidden_states = resnet(hidden_states)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class UpDecoderBlock3D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dims: Union[int, Tuple[int, int]],
|
|
in_channels: int,
|
|
out_channels: int,
|
|
resolution_idx: Optional[int] = None,
|
|
dropout: float = 0.0,
|
|
num_layers: int = 1,
|
|
resnet_eps: float = 1e-6,
|
|
resnet_groups: int = 32,
|
|
add_upsample: bool = True,
|
|
norm_layer: str = "group_norm",
|
|
):
|
|
super().__init__()
|
|
res_blocks = []
|
|
|
|
for i in range(num_layers):
|
|
input_channels = in_channels if i == 0 else out_channels
|
|
|
|
res_blocks.append(
|
|
ResnetBlock3D(
|
|
dims=dims,
|
|
in_channels=input_channels,
|
|
out_channels=out_channels,
|
|
eps=resnet_eps,
|
|
groups=resnet_groups,
|
|
dropout=dropout,
|
|
norm_layer=norm_layer,
|
|
)
|
|
)
|
|
|
|
self.res_blocks = nn.ModuleList(res_blocks)
|
|
|
|
if add_upsample:
|
|
self.upsample = Upsample3D(
|
|
dims=dims, channels=out_channels, out_channels=out_channels
|
|
)
|
|
else:
|
|
self.upsample = Identity()
|
|
|
|
self.resolution_idx = resolution_idx
|
|
|
|
def forward(
|
|
self, hidden_states: torch.FloatTensor, upsample_in_time=True
|
|
) -> torch.FloatTensor:
|
|
for resnet in self.res_blocks:
|
|
hidden_states = resnet(hidden_states)
|
|
|
|
hidden_states = self.upsample(hidden_states, upsample_in_time=upsample_in_time)
|
|
|
|
return hidden_states
|
|
|
|
|
|
class ResnetBlock3D(nn.Module):
|
|
r"""
|
|
A Resnet block.
|
|
|
|
Parameters:
|
|
in_channels (`int`): The number of channels in the input.
|
|
out_channels (`int`, *optional*, default to be `None`):
|
|
The number of output channels for the first conv layer. If None, same as `in_channels`.
|
|
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
|
|
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
|
|
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dims: Union[int, Tuple[int, int]],
|
|
in_channels: int,
|
|
out_channels: Optional[int] = None,
|
|
conv_shortcut: bool = False,
|
|
dropout: float = 0.0,
|
|
groups: int = 32,
|
|
eps: float = 1e-6,
|
|
norm_layer: str = "group_norm",
|
|
):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
out_channels = in_channels if out_channels is None else out_channels
|
|
self.out_channels = out_channels
|
|
self.use_conv_shortcut = conv_shortcut
|
|
|
|
if norm_layer == "group_norm":
|
|
self.norm1 = torch.nn.GroupNorm(
|
|
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
|
)
|
|
elif norm_layer == "pixel_norm":
|
|
self.norm1 = PixelNorm()
|
|
|
|
self.non_linearity = nn.SiLU()
|
|
|
|
self.conv1 = make_conv_nd(
|
|
dims, in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
if norm_layer == "group_norm":
|
|
self.norm2 = torch.nn.GroupNorm(
|
|
num_groups=groups, num_channels=out_channels, eps=eps, affine=True
|
|
)
|
|
elif norm_layer == "pixel_norm":
|
|
self.norm2 = PixelNorm()
|
|
|
|
self.dropout = torch.nn.Dropout(dropout)
|
|
|
|
self.conv2 = make_conv_nd(
|
|
dims, out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
self.conv_shortcut = (
|
|
make_linear_nd(
|
|
dims=dims, in_channels=in_channels, out_channels=out_channels
|
|
)
|
|
if in_channels != out_channels
|
|
else nn.Identity()
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_tensor: torch.FloatTensor,
|
|
) -> torch.FloatTensor:
|
|
hidden_states = input_tensor
|
|
|
|
hidden_states = self.norm1(hidden_states)
|
|
|
|
hidden_states = self.non_linearity(hidden_states)
|
|
|
|
hidden_states = self.conv1(hidden_states)
|
|
|
|
hidden_states = self.norm2(hidden_states)
|
|
|
|
hidden_states = self.non_linearity(hidden_states)
|
|
|
|
hidden_states = self.dropout(hidden_states)
|
|
|
|
hidden_states = self.conv2(hidden_states)
|
|
|
|
input_tensor = self.conv_shortcut(input_tensor)
|
|
|
|
output_tensor = input_tensor + hidden_states
|
|
|
|
return output_tensor
|
|
|
|
|
|
class Downsample3D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dims,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: int = 3,
|
|
padding: int = 1,
|
|
):
|
|
super().__init__()
|
|
stride: int = 2
|
|
self.padding = padding
|
|
self.in_channels = in_channels
|
|
self.dims = dims
|
|
self.conv = make_conv_nd(
|
|
dims=dims,
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
)
|
|
|
|
def forward(self, x, downsample_in_time=True):
|
|
conv = self.conv
|
|
if self.padding == 0:
|
|
if self.dims == 2:
|
|
padding = (0, 1, 0, 1)
|
|
else:
|
|
padding = (0, 1, 0, 1, 0, 1 if downsample_in_time else 0)
|
|
|
|
x = functional.pad(x, padding, mode="constant", value=0)
|
|
|
|
if self.dims == (2, 1) and not downsample_in_time:
|
|
return conv(x, skip_time_conv=True)
|
|
|
|
return conv(x)
|
|
|
|
|
|
class Upsample3D(nn.Module):
|
|
"""
|
|
An upsampling layer for 3D tensors of shape (B, C, D, H, W).
|
|
|
|
:param channels: channels in the inputs and outputs.
|
|
"""
|
|
|
|
def __init__(self, dims, channels, out_channels=None):
|
|
super().__init__()
|
|
self.dims = dims
|
|
self.channels = channels
|
|
self.out_channels = out_channels or channels
|
|
self.conv = make_conv_nd(
|
|
dims, channels, out_channels, kernel_size=3, padding=1, bias=True
|
|
)
|
|
|
|
def forward(self, x, upsample_in_time):
|
|
if self.dims == 2:
|
|
x = functional.interpolate(
|
|
x, (x.shape[2] * 2, x.shape[3] * 2), mode="nearest"
|
|
)
|
|
else:
|
|
time_scale_factor = 2 if upsample_in_time else 1
|
|
|
|
b, c, d, h, w = x.shape
|
|
x = rearrange(x, "b c d h w -> (b d) c h w")
|
|
|
|
x = functional.interpolate(
|
|
x, (x.shape[2] * 2, x.shape[3] * 2), mode="nearest"
|
|
)
|
|
_, _, h, w = x.shape
|
|
|
|
if not upsample_in_time and self.dims == (2, 1):
|
|
x = rearrange(x, "(b d) c h w -> b c d h w ", b=b, h=h, w=w)
|
|
return self.conv(x, skip_time_conv=True)
|
|
|
|
|
|
x = rearrange(x, "(b d) c h w -> (b h w) c 1 d", b=b)
|
|
|
|
|
|
new_d = x.shape[-1] * time_scale_factor
|
|
x = functional.interpolate(x, (1, new_d), mode="nearest")
|
|
|
|
x = rearrange(
|
|
x, "(b h w) c 1 new_d -> b c new_d h w", b=b, h=h, w=w, new_d=new_d
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return self.conv(x)
|
|
|
|
|
|
def patchify(x, patch_size_hw, patch_size_t=1, add_channel_padding=False):
|
|
if patch_size_hw == 1 and patch_size_t == 1:
|
|
return x
|
|
if x.dim() == 4:
|
|
x = rearrange(
|
|
x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw
|
|
)
|
|
elif x.dim() == 5:
|
|
x = rearrange(
|
|
x,
|
|
"b c (f p) (h q) (w r) -> b (c p r q) f h w",
|
|
p=patch_size_t,
|
|
q=patch_size_hw,
|
|
r=patch_size_hw,
|
|
)
|
|
else:
|
|
raise ValueError(f"Invalid input shape: {x.shape}")
|
|
|
|
if (
|
|
(x.dim() == 5)
|
|
and (patch_size_hw > patch_size_t)
|
|
and (patch_size_t > 1 or add_channel_padding)
|
|
):
|
|
channels_to_pad = x.shape[1] * (patch_size_hw // patch_size_t) - x.shape[1]
|
|
padding_zeros = torch.zeros(
|
|
x.shape[0],
|
|
channels_to_pad,
|
|
x.shape[2],
|
|
x.shape[3],
|
|
x.shape[4],
|
|
device=x.device,
|
|
dtype=x.dtype,
|
|
)
|
|
x = torch.cat([padding_zeros, x], dim=1)
|
|
|
|
return x
|
|
|
|
|
|
def unpatchify(x, patch_size_hw, patch_size_t=1, add_channel_padding=False):
|
|
if patch_size_hw == 1 and patch_size_t == 1:
|
|
return x
|
|
|
|
if (
|
|
(x.dim() == 5)
|
|
and (patch_size_hw > patch_size_t)
|
|
and (patch_size_t > 1 or add_channel_padding)
|
|
):
|
|
channels_to_keep = int(x.shape[1] * (patch_size_t / patch_size_hw))
|
|
x = x[:, :channels_to_keep, :, :, :]
|
|
|
|
if x.dim() == 4:
|
|
x = rearrange(
|
|
x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw
|
|
)
|
|
elif x.dim() == 5:
|
|
x = rearrange(
|
|
x,
|
|
"b (c p r q) f h w -> b c (f p) (h q) (w r)",
|
|
p=patch_size_t,
|
|
q=patch_size_hw,
|
|
r=patch_size_hw,
|
|
)
|
|
|
|
return x
|
|
|
|
|
|
def create_video_autoencoder_config(
|
|
latent_channels: int = 4,
|
|
):
|
|
config = {
|
|
"_class_name": "VideoAutoencoder",
|
|
"dims": (
|
|
2,
|
|
1,
|
|
),
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"latent_channels": latent_channels,
|
|
"block_out_channels": [
|
|
128,
|
|
256,
|
|
512,
|
|
512,
|
|
],
|
|
"patch_size": 1,
|
|
}
|
|
|
|
return config
|
|
|
|
|
|
def create_video_autoencoder_pathify4x4x4_config(
|
|
latent_channels: int = 4,
|
|
):
|
|
config = {
|
|
"_class_name": "VideoAutoencoder",
|
|
"dims": (
|
|
2,
|
|
1,
|
|
),
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"latent_channels": latent_channels,
|
|
"block_out_channels": [512]
|
|
* 4,
|
|
"patch_size": 4,
|
|
"latent_log_var": "uniform",
|
|
}
|
|
|
|
return config
|
|
|
|
|
|
def create_video_autoencoder_pathify4x4_config(
|
|
latent_channels: int = 4,
|
|
):
|
|
config = {
|
|
"_class_name": "VideoAutoencoder",
|
|
"dims": 2,
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"latent_channels": latent_channels,
|
|
"block_out_channels": [512]
|
|
* 4,
|
|
"patch_size": 4,
|
|
"norm_layer": "pixel_norm",
|
|
}
|
|
|
|
return config
|
|
|
|
|
|
def test_vae_patchify_unpatchify():
|
|
import torch
|
|
|
|
x = torch.randn(2, 3, 8, 64, 64)
|
|
x_patched = patchify(x, patch_size_hw=4, patch_size_t=4)
|
|
x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4)
|
|
assert torch.allclose(x, x_unpatched)
|
|
|
|
|
|
def demo_video_autoencoder_forward_backward():
|
|
|
|
config = create_video_autoencoder_pathify4x4x4_config()
|
|
|
|
|
|
video_autoencoder = VideoAutoencoder.from_config(config)
|
|
|
|
print(video_autoencoder)
|
|
|
|
|
|
total_params = sum(p.numel() for p in video_autoencoder.parameters())
|
|
print(f"Total number of parameters in VideoAutoencoder: {total_params:,}")
|
|
|
|
|
|
|
|
|
|
input_videos = torch.randn(2, 3, 8, 64, 64)
|
|
|
|
|
|
latent = video_autoencoder.encode(input_videos).latent_dist.mode()
|
|
print(f"input shape={input_videos.shape}")
|
|
print(f"latent shape={latent.shape}")
|
|
reconstructed_videos = video_autoencoder.decode(
|
|
latent, target_shape=input_videos.shape
|
|
).sample
|
|
|
|
print(f"reconstructed shape={reconstructed_videos.shape}")
|
|
|
|
|
|
loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos)
|
|
|
|
|
|
loss.backward()
|
|
|
|
print(f"Demo completed with loss: {loss.item()}")
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
demo_video_autoencoder_forward_backward()
|
|
|