|
from typing import Optional, Union
|
|
|
|
import torch
|
|
import inspect
|
|
import math
|
|
import torch.nn as nn
|
|
from diffusers import ConfigMixin, ModelMixin
|
|
from diffusers.models.autoencoders.vae import (
|
|
DecoderOutput,
|
|
DiagonalGaussianDistribution,
|
|
)
|
|
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
|
from ltx_video.models.autoencoders.conv_nd_factory import make_conv_nd
|
|
|
|
|
|
class AutoencoderKLWrapper(ModelMixin, ConfigMixin):
|
|
"""Variational Autoencoder (VAE) model with KL loss.
|
|
|
|
VAE from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma and Max Welling.
|
|
This model is a wrapper around an encoder and a decoder, and it adds a KL loss term to the reconstruction loss.
|
|
|
|
Args:
|
|
encoder (`nn.Module`):
|
|
Encoder module.
|
|
decoder (`nn.Module`):
|
|
Decoder module.
|
|
latent_channels (`int`, *optional*, defaults to 4):
|
|
Number of latent channels.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
encoder: nn.Module,
|
|
decoder: nn.Module,
|
|
latent_channels: int = 4,
|
|
dims: int = 2,
|
|
sample_size=512,
|
|
use_quant_conv: bool = True,
|
|
normalize_latent_channels: bool = False,
|
|
):
|
|
super().__init__()
|
|
|
|
|
|
self.per_channel_statistics = nn.Module()
|
|
std_of_means = torch.zeros( (128,), dtype= torch.bfloat16)
|
|
|
|
self.per_channel_statistics.register_buffer("std-of-means", std_of_means)
|
|
self.per_channel_statistics.register_buffer(
|
|
"mean-of-means",
|
|
torch.zeros_like(std_of_means)
|
|
)
|
|
|
|
|
|
|
|
|
|
self.encoder = encoder
|
|
self.use_quant_conv = use_quant_conv
|
|
self.normalize_latent_channels = normalize_latent_channels
|
|
|
|
|
|
quant_dims = 2 if dims == 2 else 3
|
|
self.decoder = decoder
|
|
if use_quant_conv:
|
|
self.quant_conv = make_conv_nd(
|
|
quant_dims, 2 * latent_channels, 2 * latent_channels, 1
|
|
)
|
|
self.post_quant_conv = make_conv_nd(
|
|
quant_dims, latent_channels, latent_channels, 1
|
|
)
|
|
else:
|
|
self.quant_conv = nn.Identity()
|
|
self.post_quant_conv = nn.Identity()
|
|
|
|
if normalize_latent_channels:
|
|
if dims == 2:
|
|
self.latent_norm_out = nn.BatchNorm2d(latent_channels, affine=False)
|
|
else:
|
|
self.latent_norm_out = nn.BatchNorm3d(latent_channels, affine=False)
|
|
else:
|
|
self.latent_norm_out = nn.Identity()
|
|
self.use_z_tiling = False
|
|
self.use_hw_tiling = False
|
|
self.dims = dims
|
|
self.z_sample_size = 1
|
|
|
|
self.decoder_params = inspect.signature(self.decoder.forward).parameters
|
|
|
|
|
|
self.set_tiling_params(sample_size=sample_size, overlap_factor=0.25)
|
|
|
|
@staticmethod
|
|
def get_VAE_tile_size(vae_config, device_mem_capacity, mixed_precision):
|
|
|
|
z_tile = 4
|
|
|
|
if vae_config == 0:
|
|
if mixed_precision:
|
|
device_mem_capacity = device_mem_capacity / 1.5
|
|
if device_mem_capacity >= 24000:
|
|
use_vae_config = 1
|
|
elif device_mem_capacity >= 8000:
|
|
use_vae_config = 2
|
|
else:
|
|
use_vae_config = 3
|
|
else:
|
|
use_vae_config = vae_config
|
|
|
|
if use_vae_config == 1:
|
|
hw_tile = 0
|
|
elif use_vae_config == 2:
|
|
hw_tile = 512
|
|
else:
|
|
hw_tile = 256
|
|
|
|
return (z_tile, hw_tile)
|
|
|
|
def set_tiling_params(self, sample_size: int = 512, overlap_factor: float = 0.25):
|
|
self.tile_sample_min_size = sample_size
|
|
num_blocks = len(self.encoder.down_blocks)
|
|
|
|
self.tile_latent_min_size = int(sample_size / 32)
|
|
self.tile_overlap_factor = overlap_factor
|
|
|
|
def enable_z_tiling(self, z_sample_size: int = 4):
|
|
r"""
|
|
Enable tiling during VAE decoding.
|
|
|
|
When this option is enabled, the VAE will split the input tensor in tiles to compute decoding in several
|
|
steps. This is useful to save some memory and allow larger batch sizes.
|
|
"""
|
|
self.use_z_tiling = z_sample_size > 1
|
|
self.z_sample_size = z_sample_size
|
|
assert (
|
|
z_sample_size % 4 == 0 or z_sample_size == 1
|
|
), f"z_sample_size must be a multiple of 4 or 1. Got {z_sample_size}."
|
|
|
|
def disable_z_tiling(self):
|
|
r"""
|
|
Disable tiling during VAE decoding. If `use_tiling` was previously invoked, this method will go back to computing
|
|
decoding in one step.
|
|
"""
|
|
self.use_z_tiling = False
|
|
|
|
def enable_hw_tiling(self):
|
|
r"""
|
|
Enable tiling during VAE decoding along the height and width dimension.
|
|
"""
|
|
self.use_hw_tiling = True
|
|
|
|
def disable_hw_tiling(self):
|
|
r"""
|
|
Disable tiling during VAE decoding along the height and width dimension.
|
|
"""
|
|
self.use_hw_tiling = False
|
|
|
|
def _hw_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True):
|
|
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
|
|
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
|
|
row_limit = self.tile_latent_min_size - blend_extent
|
|
|
|
|
|
rows = []
|
|
for i in range(0, x.shape[3], overlap_size):
|
|
row = []
|
|
for j in range(0, x.shape[4], overlap_size):
|
|
tile = x[
|
|
:,
|
|
:,
|
|
:,
|
|
i : i + self.tile_sample_min_size,
|
|
j : j + self.tile_sample_min_size,
|
|
]
|
|
tile = self.encoder(tile)
|
|
tile = self.quant_conv(tile)
|
|
row.append(tile)
|
|
rows.append(row)
|
|
result_rows = []
|
|
for i, row in enumerate(rows):
|
|
result_row = []
|
|
for j, tile in enumerate(row):
|
|
|
|
|
|
if i > 0:
|
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
|
if j > 0:
|
|
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
|
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
|
result_rows.append(torch.cat(result_row, dim=4))
|
|
|
|
moments = torch.cat(result_rows, dim=3)
|
|
return moments
|
|
|
|
def blend_z(
|
|
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
|
|
) -> torch.Tensor:
|
|
blend_extent = min(a.shape[2], b.shape[2], blend_extent)
|
|
for z in range(blend_extent):
|
|
b[:, :, z, :, :] = a[:, :, -blend_extent + z, :, :] * (
|
|
1 - z / blend_extent
|
|
) + b[:, :, z, :, :] * (z / blend_extent)
|
|
return b
|
|
|
|
def blend_v(
|
|
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
|
|
) -> torch.Tensor:
|
|
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
|
for y in range(blend_extent):
|
|
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (
|
|
1 - y / blend_extent
|
|
) + b[:, :, :, y, :] * (y / blend_extent)
|
|
return b
|
|
|
|
def blend_h(
|
|
self, a: torch.Tensor, b: torch.Tensor, blend_extent: int
|
|
) -> torch.Tensor:
|
|
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
|
|
for x in range(blend_extent):
|
|
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (
|
|
1 - x / blend_extent
|
|
) + b[:, :, :, :, x] * (x / blend_extent)
|
|
return b
|
|
|
|
def _hw_tiled_decode(self, z: torch.FloatTensor, target_shape, timestep = None):
|
|
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
|
|
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
|
|
row_limit = self.tile_sample_min_size - blend_extent
|
|
tile_target_shape = (
|
|
*target_shape[:3],
|
|
self.tile_sample_min_size,
|
|
self.tile_sample_min_size,
|
|
)
|
|
|
|
|
|
rows = []
|
|
for i in range(0, z.shape[3], overlap_size):
|
|
row = []
|
|
for j in range(0, z.shape[4], overlap_size):
|
|
tile = z[
|
|
:,
|
|
:,
|
|
:,
|
|
i : i + self.tile_latent_min_size,
|
|
j : j + self.tile_latent_min_size,
|
|
]
|
|
tile = self.post_quant_conv(tile)
|
|
decoded = self.decoder(tile, target_shape=tile_target_shape, timestep = timestep)
|
|
row.append(decoded)
|
|
rows.append(row)
|
|
result_rows = []
|
|
for i, row in enumerate(rows):
|
|
result_row = []
|
|
for j, tile in enumerate(row):
|
|
|
|
|
|
if i > 0:
|
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
|
if j > 0:
|
|
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
|
result_row.append(tile[:, :, :, :row_limit, :row_limit])
|
|
result_rows.append(torch.cat(result_row, dim=4))
|
|
|
|
dec = torch.cat(result_rows, dim=3)
|
|
return dec
|
|
|
|
def encode(
|
|
self, z: torch.FloatTensor, return_dict: bool = True
|
|
) -> Union[DecoderOutput, torch.FloatTensor]:
|
|
if self.use_z_tiling and z.shape[2] > (self.z_sample_size + 1) > 1:
|
|
tile_latent_min_tsize = self.z_sample_size
|
|
tile_sample_min_tsize = tile_latent_min_tsize * 8
|
|
tile_overlap_factor = 0.25
|
|
|
|
B, C, T, H, W = z.shape
|
|
overlap_size = int(tile_sample_min_tsize * (1 - tile_overlap_factor))
|
|
blend_extent = int(tile_latent_min_tsize * tile_overlap_factor)
|
|
t_limit = tile_latent_min_tsize - blend_extent
|
|
|
|
row = []
|
|
for i in range(0, T, overlap_size):
|
|
tile = z[:, :, i: i + tile_sample_min_tsize + 1, :, :]
|
|
if self.use_hw_tiling:
|
|
tile = self._hw_tiled_encode(tile, return_dict)
|
|
else:
|
|
tile = self._encode(tile)
|
|
if i > 0:
|
|
tile = tile[:, :, 1:, :, :]
|
|
row.append(tile)
|
|
result_row = []
|
|
for i, tile in enumerate(row):
|
|
if i > 0:
|
|
tile = self.blend_z(row[i - 1], tile, blend_extent)
|
|
result_row.append(tile[:, :, :t_limit, :, :])
|
|
else:
|
|
result_row.append(tile[:, :, :t_limit + 1, :, :])
|
|
|
|
moments = torch.cat(result_row, dim=2)
|
|
|
|
|
|
else:
|
|
moments = (
|
|
self._hw_tiled_encode(z, return_dict)
|
|
if self.use_hw_tiling and z.shape[2] > 1
|
|
else self._encode(z)
|
|
)
|
|
|
|
posterior = DiagonalGaussianDistribution(moments)
|
|
if not return_dict:
|
|
return (posterior,)
|
|
|
|
return AutoencoderKLOutput(latent_dist=posterior)
|
|
|
|
def _normalize_latent_channels(self, z: torch.FloatTensor) -> torch.FloatTensor:
|
|
if isinstance(self.latent_norm_out, nn.BatchNorm3d):
|
|
_, c, _, _, _ = z.shape
|
|
z = torch.cat(
|
|
[
|
|
self.latent_norm_out(z[:, : c // 2, :, :, :]),
|
|
z[:, c // 2 :, :, :, :],
|
|
],
|
|
dim=1,
|
|
)
|
|
elif isinstance(self.latent_norm_out, nn.BatchNorm2d):
|
|
raise NotImplementedError("BatchNorm2d not supported")
|
|
return z
|
|
|
|
def _unnormalize_latent_channels(self, z: torch.FloatTensor) -> torch.FloatTensor:
|
|
if isinstance(self.latent_norm_out, nn.BatchNorm3d):
|
|
running_mean = self.latent_norm_out.running_mean.view(1, -1, 1, 1, 1)
|
|
running_var = self.latent_norm_out.running_var.view(1, -1, 1, 1, 1)
|
|
eps = self.latent_norm_out.eps
|
|
|
|
z = z * torch.sqrt(running_var + eps) + running_mean
|
|
elif isinstance(self.latent_norm_out, nn.BatchNorm3d):
|
|
raise NotImplementedError("BatchNorm2d not supported")
|
|
return z
|
|
|
|
def _encode(self, x: torch.FloatTensor) -> AutoencoderKLOutput:
|
|
h = self.encoder(x)
|
|
moments = self.quant_conv(h)
|
|
moments = self._normalize_latent_channels(moments)
|
|
return moments
|
|
|
|
def _decode(
|
|
self,
|
|
z: torch.FloatTensor,
|
|
target_shape=None,
|
|
timestep: Optional[torch.Tensor] = None,
|
|
) -> Union[DecoderOutput, torch.FloatTensor]:
|
|
z = self._unnormalize_latent_channels(z)
|
|
z = self.post_quant_conv(z)
|
|
if "timestep" in self.decoder_params:
|
|
dec = self.decoder(z, target_shape=target_shape, timestep=timestep)
|
|
else:
|
|
dec = self.decoder(z, target_shape=target_shape)
|
|
return dec
|
|
|
|
def decode(
|
|
self,
|
|
z: torch.FloatTensor,
|
|
return_dict: bool = True,
|
|
target_shape=None,
|
|
timestep: Optional[torch.Tensor] = None,
|
|
) -> Union[DecoderOutput, torch.FloatTensor]:
|
|
assert target_shape is not None, "target_shape must be provided for decoding"
|
|
if self.use_z_tiling and z.shape[2] > (self.z_sample_size + 1) > 1:
|
|
|
|
tile_latent_min_tsize = self.z_sample_size
|
|
tile_sample_min_tsize = tile_latent_min_tsize * 8
|
|
tile_overlap_factor = 0.25
|
|
|
|
B, C, T, H, W = z.shape
|
|
overlap_size = int(tile_latent_min_tsize * (1 - tile_overlap_factor))
|
|
blend_extent = int(tile_sample_min_tsize * tile_overlap_factor)
|
|
t_limit = tile_sample_min_tsize - blend_extent
|
|
|
|
row = []
|
|
for i in range(0, T, overlap_size):
|
|
tile = z[:, :, i: i + tile_latent_min_tsize + 1, :, :]
|
|
target_shape_split = list(target_shape)
|
|
target_shape_split[2] = tile.shape[2] * 8
|
|
if self.use_hw_tiling:
|
|
decoded = self._hw_tiled_decode(tile, target_shape, timestep)
|
|
else:
|
|
decoded = self._decode(tile, target_shape=target_shape, timestep=timestep)
|
|
|
|
if i > 0:
|
|
decoded = decoded[:, :, 1:, :, :]
|
|
row.append(decoded.to(torch.float16).cpu())
|
|
decoded = None
|
|
result_row = []
|
|
for i, tile in enumerate(row):
|
|
if i > 0:
|
|
tile = self.blend_z(row[i - 1], tile, blend_extent)
|
|
result_row.append(tile[:, :, :t_limit, :, :])
|
|
else:
|
|
result_row.append(tile[:, :, :t_limit + 1, :, :])
|
|
|
|
dec = torch.cat(result_row, dim=2)
|
|
if not return_dict:
|
|
return (dec,)
|
|
|
|
return DecoderOutput(sample=dec)
|
|
else:
|
|
decoded = (
|
|
self._hw_tiled_decode(z, target_shape, timestep)
|
|
if self.use_hw_tiling
|
|
else self._decode(z, target_shape=target_shape, timestep=timestep)
|
|
)
|
|
|
|
if not return_dict:
|
|
return (decoded,)
|
|
|
|
return DecoderOutput(sample=decoded)
|
|
|
|
def forward(
|
|
self,
|
|
sample: torch.FloatTensor,
|
|
sample_posterior: bool = False,
|
|
return_dict: bool = True,
|
|
generator: Optional[torch.Generator] = None,
|
|
) -> Union[DecoderOutput, torch.FloatTensor]:
|
|
r"""
|
|
Args:
|
|
sample (`torch.FloatTensor`): Input sample.
|
|
sample_posterior (`bool`, *optional*, defaults to `False`):
|
|
Whether to sample from the posterior.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether to return a [`DecoderOutput`] instead of a plain tuple.
|
|
generator (`torch.Generator`, *optional*):
|
|
Generator used to sample from the posterior.
|
|
"""
|
|
x = sample
|
|
posterior = self.encode(x).latent_dist
|
|
if sample_posterior:
|
|
z = posterior.sample(generator=generator)
|
|
else:
|
|
z = posterior.mode()
|
|
dec = self.decode(z, target_shape=sample.shape).sample
|
|
|
|
if not return_dict:
|
|
return (dec,)
|
|
|
|
return DecoderOutput(sample=dec)
|
|
|