Wan2GP / ltx_video /ltxv.py
zxymimi23451's picture
Upload 258 files
78360e7 verified
from mmgp import offload
import argparse
import os
import random
from datetime import datetime
from pathlib import Path
from diffusers.utils import logging
from typing import Optional, List, Union
import yaml
from wan.utils.utils import calculate_new_dimensions
import imageio
import json
import numpy as np
import torch
from safetensors import safe_open
from PIL import Image
from transformers import (
T5EncoderModel,
T5Tokenizer,
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
)
from huggingface_hub import hf_hub_download
from .models.autoencoders.causal_video_autoencoder import (
CausalVideoAutoencoder,
)
from .models.transformers.symmetric_patchifier import SymmetricPatchifier
from .models.transformers.transformer3d import Transformer3DModel
from .pipelines.pipeline_ltx_video import (
ConditioningItem,
LTXVideoPipeline,
LTXMultiScalePipeline,
)
from .schedulers.rf import RectifiedFlowScheduler
from .utils.skip_layer_strategy import SkipLayerStrategy
from .models.autoencoders.latent_upsampler import LatentUpsampler
from .pipelines import crf_compressor
import cv2
MAX_HEIGHT = 720
MAX_WIDTH = 1280
MAX_NUM_FRAMES = 257
logger = logging.get_logger("LTX-Video")
def get_total_gpu_memory():
if torch.cuda.is_available():
total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
return total_memory
return 0
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
return "cpu"
def load_image_to_tensor_with_resize_and_crop(
image_input: Union[str, Image.Image],
target_height: int = 512,
target_width: int = 768,
just_crop: bool = False,
) -> torch.Tensor:
"""Load and process an image into a tensor.
Args:
image_input: Either a file path (str) or a PIL Image object
target_height: Desired height of output tensor
target_width: Desired width of output tensor
just_crop: If True, only crop the image to the target size without resizing
"""
if isinstance(image_input, str):
image = Image.open(image_input).convert("RGB")
elif isinstance(image_input, Image.Image):
image = image_input
else:
raise ValueError("image_input must be either a file path or a PIL Image object")
input_width, input_height = image.size
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = input_width / input_height
if aspect_ratio_frame > aspect_ratio_target:
new_width = int(input_height * aspect_ratio_target)
new_height = input_height
x_start = (input_width - new_width) // 2
y_start = 0
else:
new_width = input_width
new_height = int(input_width / aspect_ratio_target)
x_start = 0
y_start = (input_height - new_height) // 2
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
if not just_crop:
image = image.resize((target_width, target_height))
image = np.array(image)
image = cv2.GaussianBlur(image, (3, 3), 0)
frame_tensor = torch.from_numpy(image).float()
frame_tensor = crf_compressor.compress(frame_tensor / 255.0) * 255.0
frame_tensor = frame_tensor.permute(2, 0, 1)
frame_tensor = (frame_tensor / 127.5) - 1.0
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
return frame_tensor.unsqueeze(0).unsqueeze(2)
def calculate_padding(
source_height: int, source_width: int, target_height: int, target_width: int
) -> tuple[int, int, int, int]:
# Calculate total padding needed
pad_height = target_height - source_height
pad_width = target_width - source_width
# Calculate padding for each side
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top # Handles odd padding
pad_left = pad_width // 2
pad_right = pad_width - pad_left # Handles odd padding
# Return padded tensor
# Padding format is (left, right, top, bottom)
padding = (pad_left, pad_right, pad_top, pad_bottom)
return padding
def seed_everething(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
if torch.backends.mps.is_available():
torch.mps.manual_seed(seed)
class LTXV:
def __init__(
self,
model_filepath: str,
text_encoder_filepath: str,
dtype = torch.bfloat16,
VAE_dtype = torch.bfloat16,
mixed_precision_transformer = False
):
# if dtype == torch.float16:
dtype = torch.bfloat16
self.mixed_precision_transformer = mixed_precision_transformer
self.distilled = any("lora" in name for name in model_filepath)
model_filepath = [name for name in model_filepath if not "lora" in name ]
# with safe_open(ckpt_path, framework="pt") as f:
# metadata = f.metadata()
# config_str = metadata.get("config")
# configs = json.loads(config_str)
# allowed_inference_steps = configs.get("allowed_inference_steps", None)
# transformer = Transformer3DModel.from_pretrained(ckpt_path)
# transformer = offload.fast_load_transformers_model("c:/temp/ltxdistilled/diffusion_pytorch_model-00001-of-00006.safetensors", forcedConfigPath="c:/temp/ltxdistilled/config.json")
# vae = CausalVideoAutoencoder.from_pretrained(ckpt_path)
vae = offload.fast_load_transformers_model("ckpts/ltxv_0.9.7_VAE.safetensors", modelClass=CausalVideoAutoencoder)
# if VAE_dtype == torch.float16:
VAE_dtype = torch.bfloat16
vae = vae.to(VAE_dtype)
vae._model_dtype = VAE_dtype
# vae = offload.fast_load_transformers_model("vae.safetensors", modelClass=CausalVideoAutoencoder, modelPrefix= "vae", forcedConfigPath="config_vae.json")
# offload.save_model(vae, "vae.safetensors", config_file_path="config_vae.json")
# model_filepath = "c:/temp/ltxd/ltxv-13b-0.9.7-distilled.safetensors"
transformer = offload.fast_load_transformers_model(model_filepath, modelClass=Transformer3DModel)
# offload.save_model(transformer, "ckpts/ltxv_0.9.7_13B_distilled_bf16.safetensors", config_file_path= "c:/temp/ltxd/config.json")
# offload.save_model(transformer, "ckpts/ltxv_0.9.7_13B_distilled_quanto_bf16_int8.safetensors", do_quantize= True, config_file_path="c:/temp/ltxd/config.json")
# transformer = offload.fast_load_transformers_model(model_filepath, modelClass=Transformer3DModel)
transformer._model_dtype = dtype
if mixed_precision_transformer:
transformer._lock_dtype = torch.float
scheduler = RectifiedFlowScheduler.from_pretrained("ckpts/ltxv_scheduler.json")
# transformer = offload.fast_load_transformers_model("ltx_13B_quanto_bf16_int8.safetensors", modelClass=Transformer3DModel, modelPrefix= "model.diffusion_model", forcedConfigPath="config_transformer.json")
# offload.save_model(transformer, "ltx_13B_quanto_bf16_int8.safetensors", do_quantize= True, config_file_path="config_transformer.json")
latent_upsampler = LatentUpsampler.from_pretrained("ckpts/ltxv_0.9.7_spatial_upscaler.safetensors").to("cpu").eval()
latent_upsampler.to(VAE_dtype)
latent_upsampler._model_dtype = VAE_dtype
allowed_inference_steps = None
# text_encoder = T5EncoderModel.from_pretrained(
# "PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder"
# )
# text_encoder.to(torch.bfloat16)
# offload.save_model(text_encoder, "T5_xxl_1.1_enc_bf16.safetensors", config_file_path="T5_config.json")
# offload.save_model(text_encoder, "T5_xxl_1.1_enc_quanto_bf16_int8.safetensors", do_quantize= True, config_file_path="T5_config.json")
text_encoder = offload.fast_load_transformers_model(text_encoder_filepath)
patchifier = SymmetricPatchifier(patch_size=1)
tokenizer = T5Tokenizer.from_pretrained( "ckpts/T5_xxl_1.1")
enhance_prompt = False
if enhance_prompt:
prompt_enhancer_image_caption_model = AutoModelForCausalLM.from_pretrained( "ckpts/Florence2", trust_remote_code=True)
prompt_enhancer_image_caption_processor = AutoProcessor.from_pretrained( "ckpts/Florence2", trust_remote_code=True)
prompt_enhancer_llm_model = offload.fast_load_transformers_model("ckpts/Llama3_2_quanto_bf16_int8.safetensors")
prompt_enhancer_llm_tokenizer = AutoTokenizer.from_pretrained("ckpts/Llama3_2")
else:
prompt_enhancer_image_caption_model = None
prompt_enhancer_image_caption_processor = None
prompt_enhancer_llm_model = None
prompt_enhancer_llm_tokenizer = None
if prompt_enhancer_image_caption_model != None:
pipe["prompt_enhancer_image_caption_model"] = prompt_enhancer_image_caption_model
prompt_enhancer_image_caption_model._model_dtype = torch.float
pipe["prompt_enhancer_llm_model"] = prompt_enhancer_llm_model
# offload.profile(pipe, profile_no=5, extraModelsToQuantize = None, quantizeTransformer = False, budgets = { "prompt_enhancer_llm_model" : 10000, "prompt_enhancer_image_caption_model" : 10000, "vae" : 3000, "*" : 100 }, verboseLevel=2)
# Use submodels for the pipeline
submodel_dict = {
"transformer": transformer,
"patchifier": patchifier,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"scheduler": scheduler,
"vae": vae,
"prompt_enhancer_image_caption_model": prompt_enhancer_image_caption_model,
"prompt_enhancer_image_caption_processor": prompt_enhancer_image_caption_processor,
"prompt_enhancer_llm_model": prompt_enhancer_llm_model,
"prompt_enhancer_llm_tokenizer": prompt_enhancer_llm_tokenizer,
"allowed_inference_steps": allowed_inference_steps,
}
pipeline = LTXVideoPipeline(**submodel_dict)
pipeline = LTXMultiScalePipeline(pipeline, latent_upsampler=latent_upsampler)
self.pipeline = pipeline
self.model = transformer
self.vae = vae
# return pipeline, pipe
def generate(
self,
input_prompt: str,
n_prompt: str,
image_start = None,
image_end = None,
input_video = None,
sampling_steps = 50,
image_cond_noise_scale: float = 0.15,
input_media_path: Optional[str] = None,
strength: Optional[float] = 1.0,
seed: int = 42,
height: Optional[int] = 704,
width: Optional[int] = 1216,
frame_num: int = 81,
frame_rate: int = 30,
fit_into_canvas = True,
callback=None,
device: Optional[str] = None,
VAE_tile_size = None,
**kwargs,
):
num_inference_steps1 = sampling_steps
num_inference_steps2 = sampling_steps #10
conditioning_strengths = None
conditioning_media_paths = []
conditioning_start_frames = []
if input_video != None:
conditioning_media_paths.append(input_video)
conditioning_start_frames.append(0)
height, width = input_video.shape[-2:]
else:
if image_start != None:
frame_width, frame_height = image_start.size
height, width = calculate_new_dimensions(height, width, frame_height, frame_width, fit_into_canvas, 32)
conditioning_media_paths.append(image_start)
conditioning_start_frames.append(0)
if image_end != None:
conditioning_media_paths.append(image_end)
conditioning_start_frames.append(frame_num-1)
if len(conditioning_media_paths) == 0:
conditioning_media_paths = None
conditioning_start_frames = None
if self.distilled :
pipeline_config = "ltx_video/configs/ltxv-13b-0.9.7-distilled.yaml"
else:
pipeline_config = "ltx_video/configs/ltxv-13b-0.9.7-dev.yaml"
# check if pipeline_config is a file
if not os.path.isfile(pipeline_config):
raise ValueError(f"Pipeline config file {pipeline_config} does not exist")
with open(pipeline_config, "r") as f:
pipeline_config = yaml.safe_load(f)
# Validate conditioning arguments
if conditioning_media_paths:
# Use default strengths of 1.0
if not conditioning_strengths:
conditioning_strengths = [1.0] * len(conditioning_media_paths)
if not conditioning_start_frames:
raise ValueError(
"If `conditioning_media_paths` is provided, "
"`conditioning_start_frames` must also be provided"
)
if len(conditioning_media_paths) != len(conditioning_strengths) or len(
conditioning_media_paths
) != len(conditioning_start_frames):
raise ValueError(
"`conditioning_media_paths`, `conditioning_strengths`, "
"and `conditioning_start_frames` must have the same length"
)
if any(s < 0 or s > 1 for s in conditioning_strengths):
raise ValueError("All conditioning strengths must be between 0 and 1")
if any(f < 0 or f >= frame_num for f in conditioning_start_frames):
raise ValueError(
f"All conditioning start frames must be between 0 and {frame_num-1}"
)
# Adjust dimensions to be divisible by 32 and num_frames to be (N * 8 + 1)
height_padded = ((height - 1) // 32 + 1) * 32
width_padded = ((width - 1) // 32 + 1) * 32
num_frames_padded = ((frame_num - 2) // 8 + 1) * 8 + 1
padding = calculate_padding(height, width, height_padded, width_padded)
logger.warning(
f"Padded dimensions: {height_padded}x{width_padded}x{num_frames_padded}"
)
# prompt_enhancement_words_threshold = pipeline_config[
# "prompt_enhancement_words_threshold"
# ]
# prompt_word_count = len(prompt.split())
# enhance_prompt = (
# prompt_enhancement_words_threshold > 0
# and prompt_word_count < prompt_enhancement_words_threshold
# )
# # enhance_prompt = False
# if prompt_enhancement_words_threshold > 0 and not enhance_prompt:
# logger.info(
# f"Prompt has {prompt_word_count} words, which exceeds the threshold of {prompt_enhancement_words_threshold}. Prompt enhancement disabled."
# )
seed_everething(seed)
device = device or get_device()
generator = torch.Generator(device=device).manual_seed(seed)
media_item = None
if input_media_path:
media_item = load_media_file(
media_path=input_media_path,
height=height,
width=width,
max_frames=num_frames_padded,
padding=padding,
)
conditioning_items = (
prepare_conditioning(
conditioning_media_paths=conditioning_media_paths,
conditioning_strengths=conditioning_strengths,
conditioning_start_frames=conditioning_start_frames,
height=height,
width=width,
num_frames=frame_num,
padding=padding,
pipeline=self.pipeline,
)
if conditioning_media_paths
else None
)
stg_mode = pipeline_config.get("stg_mode", "attention_values")
del pipeline_config["stg_mode"]
if stg_mode.lower() == "stg_av" or stg_mode.lower() == "attention_values":
skip_layer_strategy = SkipLayerStrategy.AttentionValues
elif stg_mode.lower() == "stg_as" or stg_mode.lower() == "attention_skip":
skip_layer_strategy = SkipLayerStrategy.AttentionSkip
elif stg_mode.lower() == "stg_r" or stg_mode.lower() == "residual":
skip_layer_strategy = SkipLayerStrategy.Residual
elif stg_mode.lower() == "stg_t" or stg_mode.lower() == "transformer_block":
skip_layer_strategy = SkipLayerStrategy.TransformerBlock
else:
raise ValueError(f"Invalid spatiotemporal guidance mode: {stg_mode}")
# Prepare input for the pipeline
sample = {
"prompt": input_prompt,
"prompt_attention_mask": None,
"negative_prompt": n_prompt,
"negative_prompt_attention_mask": None,
}
images = self.pipeline(
**pipeline_config,
ltxv_model = self,
num_inference_steps1 = num_inference_steps1,
num_inference_steps2 = num_inference_steps2,
skip_layer_strategy=skip_layer_strategy,
generator=generator,
output_type="pt",
callback_on_step_end=None,
height=height_padded,
width=width_padded,
num_frames=num_frames_padded,
frame_rate=frame_rate,
**sample,
media_items=media_item,
strength=strength,
conditioning_items=conditioning_items,
is_video=True,
vae_per_channel_normalize=True,
image_cond_noise_scale=image_cond_noise_scale,
mixed_precision=pipeline_config.get("mixed", self.mixed_precision_transformer),
callback=callback,
VAE_tile_size = VAE_tile_size,
device=device,
# enhance_prompt=enhance_prompt,
)
if images == None:
return None
# Crop the padded images to the desired resolution and number of frames
(pad_left, pad_right, pad_top, pad_bottom) = padding
pad_bottom = -pad_bottom
pad_right = -pad_right
if pad_bottom == 0:
pad_bottom = images.shape[3]
if pad_right == 0:
pad_right = images.shape[4]
images = images[:, :, :frame_num, pad_top:pad_bottom, pad_left:pad_right]
images = images.sub_(0.5).mul_(2).squeeze(0)
return images
def prepare_conditioning(
conditioning_media_paths: List[str],
conditioning_strengths: List[float],
conditioning_start_frames: List[int],
height: int,
width: int,
num_frames: int,
padding: tuple[int, int, int, int],
pipeline: LTXVideoPipeline,
) -> Optional[List[ConditioningItem]]:
"""Prepare conditioning items based on input media paths and their parameters.
Args:
conditioning_media_paths: List of paths to conditioning media (images or videos)
conditioning_strengths: List of conditioning strengths for each media item
conditioning_start_frames: List of frame indices where each item should be applied
height: Height of the output frames
width: Width of the output frames
num_frames: Number of frames in the output video
padding: Padding to apply to the frames
pipeline: LTXVideoPipeline object used for condition video trimming
Returns:
A list of ConditioningItem objects.
"""
conditioning_items = []
for path, strength, start_frame in zip(
conditioning_media_paths, conditioning_strengths, conditioning_start_frames
):
if isinstance(path, Image.Image):
num_input_frames = orig_num_input_frames = 1
else:
num_input_frames = orig_num_input_frames = get_media_num_frames(path)
if hasattr(pipeline, "trim_conditioning_sequence") and callable(
getattr(pipeline, "trim_conditioning_sequence")
):
num_input_frames = pipeline.trim_conditioning_sequence(
start_frame, orig_num_input_frames, num_frames
)
if num_input_frames < orig_num_input_frames:
logger.warning(
f"Trimming conditioning video {path} from {orig_num_input_frames} to {num_input_frames} frames."
)
media_tensor = load_media_file(
media_path=path,
height=height,
width=width,
max_frames=num_input_frames,
padding=padding,
just_crop=True,
)
conditioning_items.append(ConditioningItem(media_tensor, start_frame, strength))
return conditioning_items
def get_media_num_frames(media_path: str) -> int:
if isinstance(media_path, Image.Image):
return 1
elif torch.is_tensor(media_path):
return media_path.shape[1]
elif isinstance(media_path, str) and any( media_path.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov", ".mkv"]):
reader = imageio.get_reader(media_path)
return min(reader.count_frames(), max_frames)
else:
raise Exception("video format not supported")
def load_media_file(
media_path: str,
height: int,
width: int,
max_frames: int,
padding: tuple[int, int, int, int],
just_crop: bool = False,
) -> torch.Tensor:
if isinstance(media_path, Image.Image):
# Input image
media_tensor = load_image_to_tensor_with_resize_and_crop(
media_path, height, width, just_crop=just_crop
)
media_tensor = torch.nn.functional.pad(media_tensor, padding)
elif torch.is_tensor(media_path):
media_tensor = media_path.unsqueeze(0)
num_input_frames = media_tensor.shape[2]
elif isinstance(media_path, str) and any( media_path.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov", ".mkv"]):
reader = imageio.get_reader(media_path)
num_input_frames = min(reader.count_frames(), max_frames)
# Read and preprocess the relevant frames from the video file.
frames = []
for i in range(num_input_frames):
frame = Image.fromarray(reader.get_data(i))
frame_tensor = load_image_to_tensor_with_resize_and_crop(
frame, height, width, just_crop=just_crop
)
frame_tensor = torch.nn.functional.pad(frame_tensor, padding)
frames.append(frame_tensor)
reader.close()
# Stack frames along the temporal dimension
media_tensor = torch.cat(frames, dim=2)
else:
raise Exception("video format not supported")
return media_tensor
if __name__ == "__main__":
main()