Wan2GP / hyvideo /hunyuan.py
zxymimi23451's picture
Upload 258 files
78360e7 verified
import os
import time
import random
import functools
from typing import List, Optional, Tuple, Union
from pathlib import Path
from einops import rearrange
import torch
import torch.distributed as dist
from hyvideo.constants import PROMPT_TEMPLATE, NEGATIVE_PROMPT, PRECISION_TO_TYPE, NEGATIVE_PROMPT_I2V
from hyvideo.vae import load_vae
from hyvideo.modules import load_model
from hyvideo.text_encoder import TextEncoder
from hyvideo.utils.data_utils import align_to, get_closest_ratio, generate_crop_size_list
from hyvideo.modules.posemb_layers import get_nd_rotary_pos_embed, get_nd_rotary_pos_embed_new
from hyvideo.diffusion.schedulers import FlowMatchDiscreteScheduler
from hyvideo.diffusion.pipelines import HunyuanVideoPipeline
from hyvideo.diffusion.pipelines import HunyuanVideoAudioPipeline
from PIL import Image
import numpy as np
import torchvision.transforms as transforms
import cv2
from wan.utils.utils import resize_lanczos, calculate_new_dimensions
from hyvideo.data_kits.audio_preprocessor import encode_audio, get_facemask
from transformers import WhisperModel
from transformers import AutoFeatureExtractor
from hyvideo.data_kits.face_align import AlignImage
import librosa
def get_audio_feature(feature_extractor, audio_path, duration):
audio_input, sampling_rate = librosa.load(audio_path, duration=duration, sr=16000)
assert sampling_rate == 16000
audio_features = []
window = 750*640
for i in range(0, len(audio_input), window):
audio_feature = feature_extractor(audio_input[i:i+window],
sampling_rate=sampling_rate,
return_tensors="pt",
device="cuda"
).input_features
audio_features.append(audio_feature)
audio_features = torch.cat(audio_features, dim=-1)
return audio_features, len(audio_input) // 640
def pad_image(crop_img, size, color=(255, 255, 255), resize_ratio=1):
crop_h, crop_w = crop_img.shape[:2]
target_w, target_h = size
scale_h, scale_w = target_h / crop_h, target_w / crop_w
if scale_w > scale_h:
resize_h = int(target_h*resize_ratio)
resize_w = int(crop_w / crop_h * resize_h)
else:
resize_w = int(target_w*resize_ratio)
resize_h = int(crop_h / crop_w * resize_w)
crop_img = cv2.resize(crop_img, (resize_w, resize_h))
pad_left = (target_w - resize_w) // 2
pad_top = (target_h - resize_h) // 2
pad_right = target_w - resize_w - pad_left
pad_bottom = target_h - resize_h - pad_top
crop_img = cv2.copyMakeBorder(crop_img, pad_top, pad_bottom, pad_left, pad_right, cv2.BORDER_CONSTANT, value=color)
return crop_img
def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels):
num_images, num_image_patches, embed_dim = image_features.shape
batch_size, sequence_length = input_ids.shape
left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id))
# 1. Create a mask to know where special image tokens are
special_image_token_mask = input_ids == self.config.image_token_index
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
# Compute the maximum embed dimension
max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length
batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index)
# 2. Compute the positions where text should be written
# Calculate new positions for text tokens in merged image-text sequence.
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
if left_padding:
new_token_positions += nb_image_pad[:, None] # offset for left padding
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
# 3. Create the full embedding, already padded to the maximum position
final_embedding = torch.zeros(
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
)
final_attention_mask = torch.zeros(
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
)
if labels is not None:
final_labels = torch.full(
(batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device
)
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
# set the corresponding tensors into their correct target device.
target_device = inputs_embeds.device
batch_indices, non_image_indices, text_to_overwrite = (
batch_indices.to(target_device),
non_image_indices.to(target_device),
text_to_overwrite.to(target_device),
)
attention_mask = attention_mask.to(target_device)
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
if labels is not None:
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
image_to_overwrite = torch.full(
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
)
image_to_overwrite[batch_indices, text_to_overwrite] = False
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device)
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
raise ValueError(
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
)
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
final_attention_mask |= image_to_overwrite
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id)
indices_to_mask = new_token_positions[batch_indices, pad_indices]
final_embedding[batch_indices, indices_to_mask] = 0
if labels is None:
final_labels = None
return final_embedding, final_attention_mask, final_labels, position_ids
def patched_llava_forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[int] = None,
vision_feature_select_strategy: Optional[str] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
):
from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
)
vision_feature_select_strategy = (
vision_feature_select_strategy
if vision_feature_select_strategy is not None
else self.config.vision_feature_select_strategy
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if pixel_values is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
image_features = None
if pixel_values is not None:
image_features = self.get_image_features(
pixel_values=pixel_values,
vision_feature_layer=vision_feature_layer,
vision_feature_select_strategy=vision_feature_select_strategy,
)
inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features(
image_features, inputs_embeds, input_ids, attention_mask, labels
)
cache_position = torch.arange(attention_mask.shape[1], device=attention_mask.device)
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
num_logits_to_keep=num_logits_to_keep,
)
logits = outputs[0]
loss = None
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return LlavaCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_features if pixel_values is not None else None,
)
def adapt_model(model, audio_block_name):
modules_dict= { k: m for k, m in model.named_modules()}
for model_layer, avatar_layer in model.double_stream_map.items():
module = modules_dict[f"{audio_block_name}.{avatar_layer}"]
target = modules_dict[f"double_blocks.{model_layer}"]
setattr(target, "audio_adapter", module )
delattr(model, audio_block_name)
class DataPreprocess(object):
def __init__(self):
self.llava_size = (336, 336)
self.llava_transform = transforms.Compose(
[
transforms.Resize(self.llava_size, interpolation=transforms.InterpolationMode.BILINEAR),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.4082107), (0.26862954, 0.26130258, 0.27577711)),
]
)
def get_batch(self, image , size, pad = False):
image = np.asarray(image)
if pad:
llava_item_image = pad_image(image.copy(), self.llava_size)
else:
llava_item_image = image.copy()
uncond_llava_item_image = np.ones_like(llava_item_image) * 255
if pad:
cat_item_image = pad_image(image.copy(), size)
else:
cat_item_image = image.copy()
llava_item_tensor = self.llava_transform(Image.fromarray(llava_item_image.astype(np.uint8)))
uncond_llava_item_tensor = self.llava_transform(Image.fromarray(uncond_llava_item_image))
cat_item_tensor = torch.from_numpy(cat_item_image.copy()).permute((2, 0, 1)) / 255.0
# batch = {
# "pixel_value_llava": llava_item_tensor.unsqueeze(0),
# "uncond_pixel_value_llava": uncond_llava_item_tensor.unsqueeze(0),
# 'pixel_value_ref': cat_item_tensor.unsqueeze(0),
# }
return llava_item_tensor.unsqueeze(0), uncond_llava_item_tensor.unsqueeze(0), cat_item_tensor.unsqueeze(0)
class Inference(object):
def __init__(
self,
i2v,
custom,
avatar,
enable_cfg,
vae,
vae_kwargs,
text_encoder,
model,
text_encoder_2=None,
pipeline=None,
feature_extractor=None,
wav2vec=None,
align_instance=None,
device=None,
):
self.i2v = i2v
self.custom = custom
self.avatar = avatar
self.enable_cfg = enable_cfg
self.vae = vae
self.vae_kwargs = vae_kwargs
self.text_encoder = text_encoder
self.text_encoder_2 = text_encoder_2
self.model = model
self.pipeline = pipeline
self.feature_extractor=feature_extractor
self.wav2vec=wav2vec
self.align_instance=align_instance
self.device = "cuda"
@classmethod
def from_pretrained(cls, model_filepath, model_type, base_model_type, text_encoder_filepath, dtype = torch.bfloat16, VAE_dtype = torch.float16, mixed_precision_transformer =torch.bfloat16 , quantizeTransformer = False, save_quantized = False, **kwargs):
device = "cuda"
import transformers
transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.forward = patched_llava_forward # force legacy behaviour to be able to use tansformers v>(4.47)
transformers.models.llava.modeling_llava.LlavaForConditionalGeneration._merge_input_ids_with_image_features = _merge_input_ids_with_image_features
torch.set_grad_enabled(False)
text_len = 512
latent_channels = 16
precision = "bf16"
vae_precision = "fp32" if VAE_dtype == torch.float32 else "bf16"
embedded_cfg_scale = 6
filepath = model_filepath[0]
i2v_condition_type = None
i2v_mode = False
custom = False
custom_audio = False
avatar = False
if base_model_type == "hunyuan_i2v":
model_id = "HYVideo-T/2"
i2v_condition_type = "token_replace"
i2v_mode = True
elif base_model_type == "hunyuan_custom":
model_id = "HYVideo-T/2-custom"
custom = True
elif base_model_type == "hunyuan_custom_audio":
model_id = "HYVideo-T/2-custom-audio"
custom_audio = True
custom = True
elif base_model_type == "hunyuan_custom_edit":
model_id = "HYVideo-T/2-custom-edit"
custom = True
elif base_model_type == "hunyuan_avatar":
model_id = "HYVideo-T/2-avatar"
text_len = 256
avatar = True
else:
model_id = "HYVideo-T/2-cfgdistill"
if i2v_mode and i2v_condition_type == "latent_concat":
in_channels = latent_channels * 2 + 1
image_embed_interleave = 2
elif i2v_mode and i2v_condition_type == "token_replace":
in_channels = latent_channels
image_embed_interleave = 4
else:
in_channels = latent_channels
image_embed_interleave = 1
out_channels = latent_channels
pinToMemory = kwargs.pop("pinToMemory", False)
partialPinning = kwargs.pop("partialPinning", False)
factor_kwargs = kwargs | {"device": "meta", "dtype": PRECISION_TO_TYPE[precision]}
if embedded_cfg_scale and i2v_mode:
factor_kwargs["guidance_embed"] = True
model = load_model(
model = model_id,
i2v_condition_type = i2v_condition_type,
in_channels=in_channels,
out_channels=out_channels,
factor_kwargs=factor_kwargs,
)
from mmgp import offload
# model = Inference.load_state_dict(args, model, model_filepath)
# model_filepath ="c:/temp/hc/mp_rank_00_model_states_video.pt"
offload.load_model_data(model, model_filepath, do_quantize= quantizeTransformer and not save_quantized, pinToMemory = pinToMemory, partialPinning = partialPinning)
pass
# offload.save_model(model, "hunyuan_video_avatar_edit_720_bf16.safetensors")
# offload.save_model(model, "hunyuan_video_avatar_edit_720_quanto_bf16_int8.safetensors", do_quantize= True)
if save_quantized:
from wgp import save_quantized_model
save_quantized_model(model, model_type, filepath, dtype, None)
model.mixed_precision = mixed_precision_transformer
if model.mixed_precision :
model._lock_dtype = torch.float32
model.lock_layers_dtypes(torch.float32)
model.eval()
# ============================= Build extra models ========================
# VAE
if custom or avatar:
vae_configpath = "ckpts/hunyuan_video_custom_VAE_config.json"
vae_filepath = "ckpts/hunyuan_video_custom_VAE_fp32.safetensors"
# elif avatar:
# vae_configpath = "ckpts/config_vae_avatar.json"
# vae_filepath = "ckpts/vae_avatar.pt"
else:
vae_configpath = "ckpts/hunyuan_video_VAE_config.json"
vae_filepath = "ckpts/hunyuan_video_VAE_fp32.safetensors"
# config = AutoencoderKLCausal3D.load_config("ckpts/hunyuan_video_VAE_config.json")
# config = AutoencoderKLCausal3D.load_config("c:/temp/hvae/config_vae.json")
vae, _, s_ratio, t_ratio = load_vae( "884-16c-hy", vae_path= vae_filepath, vae_config_path= vae_configpath, vae_precision= vae_precision, device= "cpu", )
vae._model_dtype = torch.float32 if VAE_dtype == torch.float32 else (torch.float16 if avatar else torch.bfloat16)
vae._model_dtype = torch.float32 if VAE_dtype == torch.float32 else torch.bfloat16
vae_kwargs = {"s_ratio": s_ratio, "t_ratio": t_ratio}
enable_cfg = False
# Text encoder
if i2v_mode:
text_encoder = "llm-i2v"
tokenizer = "llm-i2v"
prompt_template = "dit-llm-encode-i2v"
prompt_template_video = "dit-llm-encode-video-i2v"
elif custom or avatar :
text_encoder = "llm-i2v"
tokenizer = "llm-i2v"
prompt_template = "dit-llm-encode"
prompt_template_video = "dit-llm-encode-video"
enable_cfg = True
else:
text_encoder = "llm"
tokenizer = "llm"
prompt_template = "dit-llm-encode"
prompt_template_video = "dit-llm-encode-video"
if prompt_template_video is not None:
crop_start = PROMPT_TEMPLATE[prompt_template_video].get( "crop_start", 0 )
elif prompt_template is not None:
crop_start = PROMPT_TEMPLATE[prompt_template].get("crop_start", 0)
else:
crop_start = 0
max_length = text_len + crop_start
# prompt_template
prompt_template = PROMPT_TEMPLATE[prompt_template] if prompt_template is not None else None
# prompt_template_video
prompt_template_video = PROMPT_TEMPLATE[prompt_template_video] if prompt_template_video is not None else None
text_encoder = TextEncoder(
text_encoder_type=text_encoder,
max_length=max_length,
text_encoder_precision="fp16",
tokenizer_type=tokenizer,
i2v_mode=i2v_mode,
prompt_template=prompt_template,
prompt_template_video=prompt_template_video,
hidden_state_skip_layer=2,
apply_final_norm=False,
reproduce=True,
device="cpu",
image_embed_interleave=image_embed_interleave,
text_encoder_path = text_encoder_filepath
)
text_encoder_2 = TextEncoder(
text_encoder_type="clipL",
max_length=77,
text_encoder_precision="fp16",
tokenizer_type="clipL",
reproduce=True,
device="cpu",
)
feature_extractor = None
wav2vec = None
align_instance = None
if avatar or custom_audio:
feature_extractor = AutoFeatureExtractor.from_pretrained("ckpts/whisper-tiny/")
wav2vec = WhisperModel.from_pretrained("ckpts/whisper-tiny/").to(device="cpu", dtype=torch.float32)
wav2vec._model_dtype = torch.float32
wav2vec.requires_grad_(False)
if avatar:
align_instance = AlignImage("cuda", det_path="ckpts/det_align/detface.pt")
align_instance.facedet.model.to("cpu")
adapt_model(model, "audio_adapter_blocks")
elif custom_audio:
adapt_model(model, "audio_models")
return cls(
i2v=i2v_mode,
custom=custom,
avatar=avatar,
enable_cfg = enable_cfg,
vae=vae,
vae_kwargs=vae_kwargs,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
model=model,
feature_extractor=feature_extractor,
wav2vec=wav2vec,
align_instance=align_instance,
device=device,
)
class HunyuanVideoSampler(Inference):
def __init__(
self,
i2v,
custom,
avatar,
enable_cfg,
vae,
vae_kwargs,
text_encoder,
model,
text_encoder_2=None,
pipeline=None,
feature_extractor=None,
wav2vec=None,
align_instance=None,
device=0,
):
super().__init__(
i2v,
custom,
avatar,
enable_cfg,
vae,
vae_kwargs,
text_encoder,
model,
text_encoder_2=text_encoder_2,
pipeline=pipeline,
feature_extractor=feature_extractor,
wav2vec=wav2vec,
align_instance=align_instance,
device=device,
)
self.i2v_mode = i2v
self.enable_cfg = enable_cfg
self.pipeline = self.load_diffusion_pipeline(
avatar = self.avatar,
vae=self.vae,
text_encoder=self.text_encoder,
text_encoder_2=self.text_encoder_2,
model=self.model,
device=self.device,
)
if self.i2v_mode:
self.default_negative_prompt = NEGATIVE_PROMPT_I2V
else:
self.default_negative_prompt = NEGATIVE_PROMPT
@property
def _interrupt(self):
return self.pipeline._interrupt
@_interrupt.setter
def _interrupt(self, value):
self.pipeline._interrupt =value
def load_diffusion_pipeline(
self,
avatar,
vae,
text_encoder,
text_encoder_2,
model,
scheduler=None,
device=None,
progress_bar_config=None,
#data_type="video",
):
"""Load the denoising scheduler for inference."""
if scheduler is None:
scheduler = FlowMatchDiscreteScheduler(
shift=6.0,
reverse=True,
solver="euler",
)
if avatar:
pipeline = HunyuanVideoAudioPipeline(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
transformer=model,
scheduler=scheduler,
progress_bar_config=progress_bar_config,
)
else:
pipeline = HunyuanVideoPipeline(
vae=vae,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
transformer=model,
scheduler=scheduler,
progress_bar_config=progress_bar_config,
)
return pipeline
def get_rotary_pos_embed_new(self, video_length, height, width, concat_dict={}, enable_riflex = False):
target_ndim = 3
ndim = 5 - 2
latents_size = [(video_length-1)//4+1 , height//8, width//8]
if isinstance(self.model.patch_size, int):
assert all(s % self.model.patch_size == 0 for s in latents_size), \
f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), " \
f"but got {latents_size}."
rope_sizes = [s // self.model.patch_size for s in latents_size]
elif isinstance(self.model.patch_size, list):
assert all(s % self.model.patch_size[idx] == 0 for idx, s in enumerate(latents_size)), \
f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), " \
f"but got {latents_size}."
rope_sizes = [s // self.model.patch_size[idx] for idx, s in enumerate(latents_size)]
if len(rope_sizes) != target_ndim:
rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes # time axis
head_dim = self.model.hidden_size // self.model.heads_num
rope_dim_list = self.model.rope_dim_list
if rope_dim_list is None:
rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
freqs_cos, freqs_sin = get_nd_rotary_pos_embed_new(rope_dim_list,
rope_sizes,
theta=256,
use_real=True,
theta_rescale_factor=1,
concat_dict=concat_dict,
L_test = (video_length - 1) // 4 + 1,
enable_riflex = enable_riflex
)
return freqs_cos, freqs_sin
def get_rotary_pos_embed(self, video_length, height, width, enable_riflex = False):
target_ndim = 3
ndim = 5 - 2
# 884
vae = "884-16c-hy"
if "884" in vae:
latents_size = [(video_length - 1) // 4 + 1, height // 8, width // 8]
elif "888" in vae:
latents_size = [(video_length - 1) // 8 + 1, height // 8, width // 8]
else:
latents_size = [video_length, height // 8, width // 8]
if isinstance(self.model.patch_size, int):
assert all(s % self.model.patch_size == 0 for s in latents_size), (
f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), "
f"but got {latents_size}."
)
rope_sizes = [s // self.model.patch_size for s in latents_size]
elif isinstance(self.model.patch_size, list):
assert all(
s % self.model.patch_size[idx] == 0
for idx, s in enumerate(latents_size)
), (
f"Latent size(last {ndim} dimensions) should be divisible by patch size({self.model.patch_size}), "
f"but got {latents_size}."
)
rope_sizes = [
s // self.model.patch_size[idx] for idx, s in enumerate(latents_size)
]
if len(rope_sizes) != target_ndim:
rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes # time axis
head_dim = self.model.hidden_size // self.model.heads_num
rope_dim_list = self.model.rope_dim_list
if rope_dim_list is None:
rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
assert (
sum(rope_dim_list) == head_dim
), "sum(rope_dim_list) should equal to head_dim of attention layer"
freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
rope_dim_list,
rope_sizes,
theta=256,
use_real=True,
theta_rescale_factor=1,
L_test = (video_length - 1) // 4 + 1,
enable_riflex = enable_riflex
)
return freqs_cos, freqs_sin
def generate(
self,
input_prompt,
input_ref_images = None,
audio_guide = None,
input_frames = None,
input_masks = None,
input_video = None,
fps = 24,
height=192,
width=336,
frame_num=129,
seed=None,
n_prompt=None,
sampling_steps=50,
guide_scale=1.0,
shift=5.0,
embedded_guidance_scale=6.0,
batch_size=1,
num_videos_per_prompt=1,
i2v_resolution="720p",
image_start=None,
enable_RIFLEx = False,
i2v_condition_type: str = "token_replace",
i2v_stability=True,
VAE_tile_size = None,
joint_pass = False,
cfg_star_switch = False,
fit_into_canvas = True,
conditioning_latents_size = 0,
**kwargs,
):
if VAE_tile_size != None:
self.vae.tile_sample_min_tsize = VAE_tile_size["tile_sample_min_tsize"]
self.vae.tile_latent_min_tsize = VAE_tile_size["tile_latent_min_tsize"]
self.vae.tile_sample_min_size = VAE_tile_size["tile_sample_min_size"]
self.vae.tile_latent_min_size = VAE_tile_size["tile_latent_min_size"]
self.vae.tile_overlap_factor = VAE_tile_size["tile_overlap_factor"]
self.vae.enable_tiling()
i2v_mode= self.i2v_mode
if not self.enable_cfg:
guide_scale=1.0
# ========================================================================
# Arguments: seed
# ========================================================================
if isinstance(seed, torch.Tensor):
seed = seed.tolist()
if seed is None:
seeds = [
random.randint(0, 1_000_000)
for _ in range(batch_size * num_videos_per_prompt)
]
elif isinstance(seed, int):
seeds = [
seed + i
for _ in range(batch_size)
for i in range(num_videos_per_prompt)
]
elif isinstance(seed, (list, tuple)):
if len(seed) == batch_size:
seeds = [
int(seed[i]) + j
for i in range(batch_size)
for j in range(num_videos_per_prompt)
]
elif len(seed) == batch_size * num_videos_per_prompt:
seeds = [int(s) for s in seed]
else:
raise ValueError(
f"Length of seed must be equal to number of prompt(batch_size) or "
f"batch_size * num_videos_per_prompt ({batch_size} * {num_videos_per_prompt}), got {seed}."
)
else:
raise ValueError(
f"Seed must be an integer, a list of integers, or None, got {seed}."
)
from wan.utils.utils import seed_everything
seed_everything(seed)
generator = [torch.Generator("cuda").manual_seed(seed) for seed in seeds]
# generator = [torch.Generator(self.device).manual_seed(seed) for seed in seeds]
# ========================================================================
# Arguments: target_width, target_height, target_frame_num
# ========================================================================
if width <= 0 or height <= 0 or frame_num <= 0:
raise ValueError(
f"`height` and `width` and `frame_num` must be positive integers, got height={height}, width={width}, frame_num={frame_num}"
)
if (frame_num - 1) % 4 != 0:
raise ValueError(
f"`frame_num-1` must be a multiple of 4, got {frame_num}"
)
target_height = align_to(height, 16)
target_width = align_to(width, 16)
target_frame_num = frame_num
audio_strength = 1
if input_ref_images != None:
# ip_cfg_scale = 3.0
ip_cfg_scale = 0
denoise_strength = 1
# guide_scale=7.5
# shift=13
name = "person"
input_ref_images = input_ref_images[0]
# ========================================================================
# Arguments: prompt, new_prompt, negative_prompt
# ========================================================================
if not isinstance(input_prompt, str):
raise TypeError(f"`prompt` must be a string, but got {type(input_prompt)}")
input_prompt = [input_prompt.strip()]
# negative prompt
if n_prompt is None or n_prompt == "":
n_prompt = self.default_negative_prompt
if guide_scale == 1.0:
n_prompt = ""
if not isinstance(n_prompt, str):
raise TypeError(
f"`negative_prompt` must be a string, but got {type(n_prompt)}"
)
n_prompt = [n_prompt.strip()]
# ========================================================================
# Scheduler
# ========================================================================
scheduler = FlowMatchDiscreteScheduler(
shift=shift,
reverse=True,
solver="euler"
)
self.pipeline.scheduler = scheduler
# ---------------------------------
# Reference condition
# ---------------------------------
img_latents = None
semantic_images = None
denoise_strength = 0
ip_cfg_scale = 0
if i2v_mode:
if i2v_resolution == "720p":
bucket_hw_base_size = 960
elif i2v_resolution == "540p":
bucket_hw_base_size = 720
elif i2v_resolution == "360p":
bucket_hw_base_size = 480
else:
raise ValueError(f"i2v_resolution: {i2v_resolution} must be in [360p, 540p, 720p]")
# semantic_images = [Image.open(i2v_image_path).convert('RGB')]
semantic_images = [image_start.convert('RGB')] #
origin_size = semantic_images[0].size
h, w = origin_size
h, w = calculate_new_dimensions(height, width, h, w, fit_into_canvas)
closest_size = (w, h)
# crop_size_list = generate_crop_size_list(bucket_hw_base_size, 32)
# aspect_ratios = np.array([round(float(h)/float(w), 5) for h, w in crop_size_list])
# closest_size, closest_ratio = get_closest_ratio(origin_size[1], origin_size[0], aspect_ratios, crop_size_list)
ref_image_transform = transforms.Compose([
transforms.Resize(closest_size),
transforms.CenterCrop(closest_size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
semantic_image_pixel_values = [ref_image_transform(semantic_image) for semantic_image in semantic_images]
semantic_image_pixel_values = torch.cat(semantic_image_pixel_values).unsqueeze(0).unsqueeze(2).to(self.device)
with torch.autocast(device_type="cuda", dtype=torch.float16, enabled=True):
img_latents = self.pipeline.vae.encode(semantic_image_pixel_values).latent_dist.mode() # B, C, F, H, W
img_latents.mul_(self.pipeline.vae.config.scaling_factor)
target_height, target_width = closest_size
# ========================================================================
# Build Rope freqs
# ========================================================================
if input_ref_images == None:
freqs_cos, freqs_sin = self.get_rotary_pos_embed(target_frame_num, target_height, target_width, enable_RIFLEx)
else:
if self.avatar:
w, h = input_ref_images.size
target_height, target_width = calculate_new_dimensions(target_height, target_width, h, w, fit_into_canvas)
if target_width != w or target_height != h:
input_ref_images = input_ref_images.resize((target_width,target_height), resample=Image.Resampling.LANCZOS)
concat_dict = {'mode': 'timecat', 'bias': -1}
freqs_cos, freqs_sin = self.get_rotary_pos_embed_new(129, target_height, target_width, concat_dict)
else:
if input_frames != None:
target_height, target_width = input_frames.shape[-3:-1]
elif input_video != None:
target_height, target_width = input_video.shape[-2:]
concat_dict = {'mode': 'timecat-w', 'bias': -1}
freqs_cos, freqs_sin = self.get_rotary_pos_embed_new(target_frame_num, target_height, target_width, concat_dict, enable_RIFLEx)
n_tokens = freqs_cos.shape[0]
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
# ========================================================================
# Pipeline inference
# ========================================================================
pixel_value_llava, uncond_pixel_value_llava, pixel_value_ref = None, None, None
if input_ref_images == None:
name = None
else:
pixel_value_llava, uncond_pixel_value_llava, pixel_value_ref = DataPreprocess().get_batch(input_ref_images, (target_width, target_height), pad = self.custom)
ref_latents, uncond_audio_prompts, audio_prompts, face_masks, motion_exp, motion_pose = None, None, None, None, None, None
bg_latents = None
if input_video != None:
pixel_value_bg = input_video.unsqueeze(0)
pixel_value_mask = torch.zeros_like(input_video).unsqueeze(0)
if input_frames != None:
pixel_value_video_bg = input_frames.permute(-1,0,1,2).unsqueeze(0).float()
pixel_value_video_mask = input_masks.unsqueeze(-1).repeat(1,1,1,3).permute(-1,0,1,2).unsqueeze(0).float()
pixel_value_video_bg = pixel_value_video_bg.div_(127.5).add_(-1.)
if input_video != None:
pixel_value_bg = torch.cat([pixel_value_bg, pixel_value_video_bg], dim=2)
pixel_value_mask = torch.cat([ pixel_value_mask, pixel_value_video_mask], dim=2)
else:
pixel_value_bg = pixel_value_video_bg
pixel_value_mask = pixel_value_video_mask
pixel_value_video_mask, pixel_value_video_bg = None, None
if input_video != None or input_frames != None:
if pixel_value_bg.shape[2] < frame_num:
padding_shape = list(pixel_value_bg.shape[0:2]) + [frame_num-pixel_value_bg.shape[2]] + list(pixel_value_bg.shape[3:])
pixel_value_bg = torch.cat([pixel_value_bg, torch.full(padding_shape, -1, dtype=pixel_value_bg.dtype, device= pixel_value_bg.device ) ], dim=2)
pixel_value_mask = torch.cat([ pixel_value_mask, torch.full(padding_shape, 255, dtype=pixel_value_mask.dtype, device= pixel_value_mask.device ) ], dim=2)
bg_latents = self.vae.encode(pixel_value_bg).latent_dist.sample()
pixel_value_mask = pixel_value_mask.div_(127.5).add_(-1.)
mask_latents = self.vae.encode(pixel_value_mask).latent_dist.sample()
bg_latents = torch.cat([bg_latents, mask_latents], dim=1)
bg_latents.mul_(self.vae.config.scaling_factor)
if self.avatar:
if n_prompt == None or len(n_prompt) == 0:
n_prompt = "Aerial view, aerial view, overexposed, low quality, deformation, a poor composition, bad hands, bad teeth, bad eyes, bad limbs, distortion, blurring, Lens changes"
uncond_pixel_value_llava = pixel_value_llava.clone()
pixel_value_ref = pixel_value_ref.unsqueeze(0)
self.align_instance.facedet.model.to("cuda")
face_masks = get_facemask(pixel_value_ref.to("cuda")*255, self.align_instance, area=3.0)
# iii = (face_masks.squeeze(0).squeeze(0).permute(1,2,0).repeat(1,1,3)*255).cpu().numpy().astype(np.uint8)
# image = Image.fromarray(iii)
# image.save("mask.png")
# jjj = (pixel_value_ref.squeeze(0).squeeze(0).permute(1,2,0)*255).cpu().numpy().astype(np.uint8)
self.align_instance.facedet.model.to("cpu")
# pixel_value_ref = pixel_value_ref.clone().repeat(1,129,1,1,1)
pixel_value_ref = pixel_value_ref.repeat(1,1+4*2,1,1,1)
pixel_value_ref = pixel_value_ref * 2 - 1
pixel_value_ref_for_vae = rearrange(pixel_value_ref, "b f c h w -> b c f h w")
vae_dtype = self.vae.dtype
with torch.autocast(device_type="cuda", dtype=vae_dtype, enabled=vae_dtype != torch.float32):
ref_latents = self.vae.encode(pixel_value_ref_for_vae).latent_dist.sample()
ref_latents = torch.cat( [ref_latents[:,:, :1], ref_latents[:,:, 1:2].repeat(1,1,31,1,1), ref_latents[:,:, -1:]], dim=2)
pixel_value_ref, pixel_value_ref_for_vae = None, None
if hasattr(self.vae.config, 'shift_factor') and self.vae.config.shift_factor:
ref_latents.sub_(self.vae.config.shift_factor).mul_(self.vae.config.scaling_factor)
else:
ref_latents.mul_(self.vae.config.scaling_factor)
# out_latents= ref_latents / self.vae.config.scaling_factor
# image = self.vae.decode(out_latents, return_dict=False, generator=generator)[0]
# image = image.clamp(-1, 1)
# from wan.utils.utils import cache_video
# cache_video( tensor=image, save_file="decode.mp4", fps=25, nrow=1, normalize=True, value_range=(-1, 1))
motion_pose = np.array([25] * 4)
motion_exp = np.array([30] * 4)
motion_pose = torch.from_numpy(motion_pose).unsqueeze(0)
motion_exp = torch.from_numpy(motion_exp).unsqueeze(0)
face_masks = torch.nn.functional.interpolate(face_masks.float().squeeze(2),
(ref_latents.shape[-2],
ref_latents.shape[-1]),
mode="bilinear").unsqueeze(2).to(dtype=ref_latents.dtype)
if audio_guide != None:
audio_input, audio_len = get_audio_feature(self.feature_extractor, audio_guide, duration = frame_num/fps )
audio_prompts = audio_input[0]
weight_dtype = audio_prompts.dtype
if self.custom:
audio_len = min(audio_len, frame_num)
audio_input = audio_input[:, :audio_len]
audio_prompts = encode_audio(self.wav2vec, audio_prompts.to(dtype=self.wav2vec.dtype), fps, num_frames=audio_len)
audio_prompts = audio_prompts.to(self.model.dtype)
segment_size = 129 if self.avatar else frame_num
if audio_prompts.shape[1] <= segment_size:
audio_prompts = torch.cat([audio_prompts, torch.zeros_like(audio_prompts[:, :1]).repeat(1,segment_size-audio_prompts.shape[1], 1, 1, 1)], dim=1)
else:
audio_prompts = torch.cat([audio_prompts, torch.zeros_like(audio_prompts[:, :1]).repeat(1, 5, 1, 1, 1)], dim=1)
uncond_audio_prompts = torch.zeros_like(audio_prompts[:,:129])
samples = self.pipeline(
prompt=input_prompt,
height=target_height,
width=target_width,
video_length=target_frame_num,
num_inference_steps=sampling_steps,
guidance_scale=guide_scale,
negative_prompt=n_prompt,
num_videos_per_prompt=num_videos_per_prompt,
generator=generator,
output_type="pil",
name = name,
pixel_value_ref = pixel_value_ref,
ref_latents=ref_latents, # [1, 16, 1, h//8, w//8]
pixel_value_llava=pixel_value_llava, # [1, 3, 336, 336]
uncond_pixel_value_llava=uncond_pixel_value_llava,
face_masks=face_masks, # [b f h w]
audio_prompts=audio_prompts,
uncond_audio_prompts=uncond_audio_prompts,
motion_exp=motion_exp,
motion_pose=motion_pose,
fps= torch.from_numpy(np.array(fps)),
bg_latents = bg_latents,
audio_strength = audio_strength,
denoise_strength=denoise_strength,
ip_cfg_scale=ip_cfg_scale,
freqs_cis=(freqs_cos, freqs_sin),
n_tokens=n_tokens,
embedded_guidance_scale=embedded_guidance_scale,
data_type="video" if target_frame_num > 1 else "image",
is_progress_bar=True,
vae_ver="884-16c-hy",
enable_tiling=True,
i2v_mode=i2v_mode,
i2v_condition_type=i2v_condition_type,
i2v_stability=i2v_stability,
img_latents=img_latents,
semantic_images=semantic_images,
joint_pass = joint_pass,
cfg_star_rescale = cfg_star_switch,
callback = callback,
callback_steps = callback_steps,
)[0]
if samples == None:
return None
samples = samples.squeeze(0)
return samples