File size: 19,720 Bytes
78360e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
import torch
from typing import Union, Tuple, List, Optional
import numpy as np


###### Thanks to the RifleX project (https://github.com/thu-ml/RIFLEx/) for this alternative pos embed for long videos
#  
def get_1d_rotary_pos_embed_riflex(

    dim: int,

    pos: Union[np.ndarray, int],

    theta: float = 10000.0,

    use_real=False,

    k: Optional[int] = None,

    L_test: Optional[int] = None,

):
    """

    RIFLEx: Precompute the frequency tensor for complex exponentials (cis) with given dimensions.



    This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end

    index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64

    data type.



    Args:

        dim (`int`): Dimension of the frequency tensor.

        pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar

        theta (`float`, *optional*, defaults to 10000.0):

            Scaling factor for frequency computation. Defaults to 10000.0.

        use_real (`bool`, *optional*):

            If True, return real part and imaginary part separately. Otherwise, return complex numbers.

        k (`int`, *optional*, defaults to None): the index for the intrinsic frequency in RoPE

        L_test (`int`, *optional*, defaults to None): the number of frames for inference

    Returns:

        `torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]

    """
    assert dim % 2 == 0

    if isinstance(pos, int):
        pos = torch.arange(pos)
    if isinstance(pos, np.ndarray):
        pos = torch.from_numpy(pos)  # type: ignore  # [S]

    freqs = 1.0 / (
            theta ** (torch.arange(0, dim, 2, device=pos.device)[: (dim // 2)].float() / dim)
    )  # [D/2]

    # === Riflex modification start ===
    # Reduce the intrinsic frequency to stay within a single period after extrapolation (see Eq. (8)).
    # Empirical observations show that a few videos may exhibit repetition in the tail frames.
    # To be conservative, we multiply by 0.9 to keep the extrapolated length below 90% of a single period.
    if k is not None:
        freqs[k-1] = 0.9 * 2 * torch.pi / L_test
    # === Riflex modification end ===
    freqs = torch.outer(pos, freqs)  # type: ignore   # [S, D/2]

    if use_real:
        freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float()  # [S, D]
        freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float()  # [S, D]
        return freqs_cos, freqs_sin
    else:
        # lumina
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64     # [S, D/2]
        return freqs_cis

def identify_k( b: float, d: int, N: int):
    """

    This function identifies the index of the intrinsic frequency component in a RoPE-based pre-trained diffusion transformer.



    Args:

        b (`float`): The base frequency for RoPE.

        d (`int`): Dimension of the frequency tensor

        N (`int`): the first observed repetition frame in latent space

    Returns:

        k (`int`): the index of intrinsic frequency component

        N_k (`int`): the period of intrinsic frequency component in latent space

    Example:

        In HunyuanVideo, b=256 and d=16, the repetition occurs approximately 8s (N=48 in latent space).

        k, N_k = identify_k(b=256, d=16, N=48)

        In this case, the intrinsic frequency index k is 4, and the period N_k is 50.

    """

    # Compute the period of each frequency in RoPE according to Eq.(4)
    periods = []
    for j in range(1, d // 2 + 1):
        theta_j = 1.0 / (b ** (2 * (j - 1) / d))
        N_j = round(2 * torch.pi / theta_j)
        periods.append(N_j)

    # Identify the intrinsic frequency whose period is closed to N(see Eq.(7))
    diffs = [abs(N_j - N) for N_j in periods]
    k = diffs.index(min(diffs)) + 1
    N_k = periods[k-1]
    return k, N_k

def _to_tuple(x, dim=2):
    if isinstance(x, int):
        return (x,) * dim
    elif len(x) == dim:
        return x
    else:
        raise ValueError(f"Expected length {dim} or int, but got {x}")


def get_meshgrid_nd(start, *args, dim=2):
    """

    Get n-D meshgrid with start, stop and num.



    Args:

        start (int or tuple): If len(args) == 0, start is num; If len(args) == 1, start is start, args[0] is stop,

            step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num. For n-dim, start/stop/num

            should be int or n-tuple. If n-tuple is provided, the meshgrid will be stacked following the dim order in

            n-tuples.

        *args: See above.

        dim (int): Dimension of the meshgrid. Defaults to 2.



    Returns:

        grid (np.ndarray): [dim, ...]

    """
    if len(args) == 0:
        # start is grid_size
        num = _to_tuple(start, dim=dim)
        start = (0,) * dim
        stop = num
    elif len(args) == 1:
        # start is start, args[0] is stop, step is 1
        start = _to_tuple(start, dim=dim)
        stop = _to_tuple(args[0], dim=dim)
        num = [stop[i] - start[i] for i in range(dim)]
    elif len(args) == 2:
        # start is start, args[0] is stop, args[1] is num
        start = _to_tuple(start, dim=dim)  # Left-Top       eg: 12,0
        stop = _to_tuple(args[0], dim=dim)  # Right-Bottom   eg: 20,32
        num = _to_tuple(args[1], dim=dim)  # Target Size    eg: 32,124
    else:
        raise ValueError(f"len(args) should be 0, 1 or 2, but got {len(args)}")

    # PyTorch implement of np.linspace(start[i], stop[i], num[i], endpoint=False)
    axis_grid = []
    for i in range(dim):
        a, b, n = start[i], stop[i], num[i]
        g = torch.linspace(a, b, n + 1, dtype=torch.float32)[:n]
        axis_grid.append(g)
    grid = torch.meshgrid(*axis_grid, indexing="ij")  # dim x [W, H, D]
    grid = torch.stack(grid, dim=0)  # [dim, W, H, D]

    return grid


#################################################################################
#                   Rotary Positional Embedding Functions                       #
#################################################################################
# https://github.com/meta-llama/llama/blob/be327c427cc5e89cc1d3ab3d3fec4484df771245/llama/model.py#L80


def reshape_for_broadcast(

    freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],

    x: torch.Tensor,

    head_first=False,

):
    """

    Reshape frequency tensor for broadcasting it with another tensor.



    This function reshapes the frequency tensor to have the same shape as the target tensor 'x'

    for the purpose of broadcasting the frequency tensor during element-wise operations.



    Notes:

        When using FlashMHAModified, head_first should be False.

        When using Attention, head_first should be True.



    Args:

        freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Frequency tensor to be reshaped.

        x (torch.Tensor): Target tensor for broadcasting compatibility.

        head_first (bool): head dimension first (except batch dim) or not.



    Returns:

        torch.Tensor: Reshaped frequency tensor.



    Raises:

        AssertionError: If the frequency tensor doesn't match the expected shape.

        AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.

    """
    ndim = x.ndim
    assert 0 <= 1 < ndim

    if isinstance(freqs_cis, tuple):
        # freqs_cis: (cos, sin) in real space
        if head_first:
            assert freqs_cis[0].shape == (
                x.shape[-2],
                x.shape[-1],
            ), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}"
            shape = [
                d if i == ndim - 2 or i == ndim - 1 else 1
                for i, d in enumerate(x.shape)
            ]
        else:
            assert freqs_cis[0].shape == (
                x.shape[1],
                x.shape[-1],
            ), f"freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}"
            shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
    else:
        # freqs_cis: values in complex space
        if head_first:
            assert freqs_cis.shape == (
                x.shape[-2],
                x.shape[-1],
            ), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}"
            shape = [
                d if i == ndim - 2 or i == ndim - 1 else 1
                for i, d in enumerate(x.shape)
            ]
        else:
            assert freqs_cis.shape == (
                x.shape[1],
                x.shape[-1],
            ), f"freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}"
            shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return freqs_cis.view(*shape)


def rotate_half(x):
    x_real, x_imag = (
        x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1)
    )  # [B, S, H, D//2]
    return torch.stack([-x_imag, x_real], dim=-1).flatten(3)


def apply_rotary_emb( qklist,

    freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]],

    head_first: bool = False,

) -> Tuple[torch.Tensor, torch.Tensor]:
    """

    Apply rotary embeddings to input tensors using the given frequency tensor.



    This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided

    frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor

    is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are

    returned as real tensors.



    Args:

        xq (torch.Tensor): Query tensor to apply rotary embeddings. [B, S, H, D]

        xk (torch.Tensor): Key tensor to apply rotary embeddings.   [B, S, H, D]

        freqs_cis (torch.Tensor or tuple): Precomputed frequency tensor for complex exponential.

        head_first (bool): head dimension first (except batch dim) or not.



    Returns:

        Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.



    """
    xq, xk = qklist
    qklist.clear()
    xk_out = None
    if isinstance(freqs_cis, tuple):
        cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first)  # [S, D]
        cos, sin = cos.to(xq.device), sin.to(xq.device)
        # real * cos - imag * sin
        # imag * cos + real * sin
        xq_dtype = xq.dtype
        xq_out = xq.to(torch.float)
        xq = None        
        xq_rot = rotate_half(xq_out)
        xq_out *= cos
        xq_rot *= sin
        xq_out += xq_rot
        del xq_rot
        xq_out = xq_out.to(xq_dtype)

        xk_out = xk.to(torch.float)
        xk = None
        xk_rot = rotate_half(xk_out)
        xk_out *= cos
        xk_rot *= sin
        xk_out += xk_rot
        del xk_rot
        xk_out = xk_out.to(xq_dtype)
    else:
        # view_as_complex will pack [..., D/2, 2](real) to [..., D/2](complex)
        xq_ = torch.view_as_complex(
            xq.float().reshape(*xq.shape[:-1], -1, 2)
        )  # [B, S, H, D//2]
        freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(
            xq.device
        )  # [S, D//2] --> [1, S, 1, D//2]
        # (real, imag) * (cos, sin) = (real * cos - imag * sin, imag * cos + real * sin)
        # view_as_real will expand [..., D/2](complex) to [..., D/2, 2](real)
        xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
        xk_ = torch.view_as_complex(
            xk.float().reshape(*xk.shape[:-1], -1, 2)
        )  # [B, S, H, D//2]
        xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)

    return xq_out, xk_out




    return xq_out, xk_out
def get_nd_rotary_pos_embed(

    rope_dim_list,

    start,

    *args,

    theta=10000.0,

    use_real=False,

    theta_rescale_factor: Union[float, List[float]] = 1.0,

    interpolation_factor: Union[float, List[float]] = 1.0,

    k = 6,

    L_test = 66,

    enable_riflex = True

):
    """

    This is a n-d version of precompute_freqs_cis, which is a RoPE for tokens with n-d structure.



    Args:

        rope_dim_list (list of int): Dimension of each rope. len(rope_dim_list) should equal to n.

            sum(rope_dim_list) should equal to head_dim of attention layer.

        start (int | tuple of int | list of int): If len(args) == 0, start is num; If len(args) == 1, start is start,

            args[0] is stop, step is 1; If len(args) == 2, start is start, args[0] is stop, args[1] is num.

        *args: See above.

        theta (float): Scaling factor for frequency computation. Defaults to 10000.0.

        use_real (bool): If True, return real part and imaginary part separately. Otherwise, return complex numbers.

            Some libraries such as TensorRT does not support complex64 data type. So it is useful to provide a real

            part and an imaginary part separately.

        theta_rescale_factor (float): Rescale factor for theta. Defaults to 1.0.



    Returns:

        pos_embed (torch.Tensor): [HW, D/2]

    """

    grid = get_meshgrid_nd(
        start, *args, dim=len(rope_dim_list)
    )  # [3, W, H, D] / [2, W, H]

    if isinstance(theta_rescale_factor, int) or isinstance(theta_rescale_factor, float):
        theta_rescale_factor = [theta_rescale_factor] * len(rope_dim_list)
    elif isinstance(theta_rescale_factor, list) and len(theta_rescale_factor) == 1:
        theta_rescale_factor = [theta_rescale_factor[0]] * len(rope_dim_list)
    assert len(theta_rescale_factor) == len(
        rope_dim_list
    ), "len(theta_rescale_factor) should equal to len(rope_dim_list)"

    if isinstance(interpolation_factor, int) or isinstance(interpolation_factor, float):
        interpolation_factor = [interpolation_factor] * len(rope_dim_list)
    elif isinstance(interpolation_factor, list) and len(interpolation_factor) == 1:
        interpolation_factor = [interpolation_factor[0]] * len(rope_dim_list)
    assert len(interpolation_factor) == len(
        rope_dim_list
    ), "len(interpolation_factor) should equal to len(rope_dim_list)"

    # use 1/ndim of dimensions to encode grid_axis
    embs = []
    for i in range(len(rope_dim_list)):
        # emb = get_1d_rotary_pos_embed(
        #     rope_dim_list[i],
        #     grid[i].reshape(-1),
        #     theta,
        #     use_real=use_real,
        #     theta_rescale_factor=theta_rescale_factor[i],
        #     interpolation_factor=interpolation_factor[i],
        # )  # 2 x [WHD, rope_dim_list[i]]


        # === RIFLEx modification start ===
        # apply RIFLEx for time dimension
        if i == 0 and enable_riflex:
            emb = get_1d_rotary_pos_embed_riflex(rope_dim_list[i], grid[i].reshape(-1), theta, use_real=True, k=k, L_test=L_test)
        # === RIFLEx modification end ===
        else:
            emb = get_1d_rotary_pos_embed(rope_dim_list[i], grid[i].reshape(-1), theta, use_real=True, theta_rescale_factor=theta_rescale_factor[i],interpolation_factor=interpolation_factor[i],)
        embs.append(emb)

    if use_real:
        cos = torch.cat([emb[0] for emb in embs], dim=1)  # (WHD, D/2)
        sin = torch.cat([emb[1] for emb in embs], dim=1)  # (WHD, D/2)
        return cos, sin
    else:
        emb = torch.cat(embs, dim=1)  # (WHD, D/2)
        return emb


def get_1d_rotary_pos_embed(

    dim: int,

    pos: Union[torch.FloatTensor, int],

    theta: float = 10000.0,

    use_real: bool = False,

    theta_rescale_factor: float = 1.0,

    interpolation_factor: float = 1.0,

) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
    """

    Precompute the frequency tensor for complex exponential (cis) with given dimensions.

    (Note: `cis` means `cos + i * sin`, where i is the imaginary unit.)



    This function calculates a frequency tensor with complex exponential using the given dimension 'dim'

    and the end index 'end'. The 'theta' parameter scales the frequencies.

    The returned tensor contains complex values in complex64 data type.



    Args:

        dim (int): Dimension of the frequency tensor.

        pos (int or torch.FloatTensor): Position indices for the frequency tensor. [S] or scalar

        theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0.

        use_real (bool, optional): If True, return real part and imaginary part separately.

                                   Otherwise, return complex numbers.

        theta_rescale_factor (float, optional): Rescale factor for theta. Defaults to 1.0.



    Returns:

        freqs_cis: Precomputed frequency tensor with complex exponential. [S, D/2]

        freqs_cos, freqs_sin: Precomputed frequency tensor with real and imaginary parts separately. [S, D]

    """
    if isinstance(pos, int):
        pos = torch.arange(pos).float()

    # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
    # has some connection to NTK literature
    if theta_rescale_factor != 1.0:
        theta *= theta_rescale_factor ** (dim / (dim - 2))

    freqs = 1.0 / (
        theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)
    )  # [D/2]
    # assert interpolation_factor == 1.0, f"interpolation_factor: {interpolation_factor}"
    freqs = torch.outer(pos * interpolation_factor, freqs)  # [S, D/2]
    if use_real:
        freqs_cos = freqs.cos().repeat_interleave(2, dim=1)  # [S, D]
        freqs_sin = freqs.sin().repeat_interleave(2, dim=1)  # [S, D]
        return freqs_cos, freqs_sin
    else:
        freqs_cis = torch.polar(
            torch.ones_like(freqs), freqs
        )  # complex64     # [S, D/2]
        return freqs_cis

def get_rotary_pos_embed(latents_size, enable_RIFLEx = False):
    target_ndim = 3
    ndim = 5 - 2

    patch_size = [1, 2, 2]
    if isinstance(patch_size, int):
        assert all(s % patch_size == 0 for s in latents_size), (
            f"Latent size(last {ndim} dimensions) should be divisible by patch size({patch_size}), "
            f"but got {latents_size}."
        )
        rope_sizes = [s // patch_size for s in latents_size]
    elif isinstance(patch_size, list):
        assert all(
            s % patch_size[idx] == 0
            for idx, s in enumerate(latents_size)
        ), (
            f"Latent size(last {ndim} dimensions) should be divisible by patch size({patch_size}), "
            f"but got {latents_size}."
        )
        rope_sizes = [
            s // patch_size[idx] for idx, s in enumerate(latents_size)
        ]

    if len(rope_sizes) != target_ndim:
        rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes  # time axis
    head_dim = 128
    rope_dim_list = [44, 42, 42]
    if rope_dim_list is None:
        rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
    assert (
        sum(rope_dim_list) == head_dim
    ), "sum(rope_dim_list) should equal to head_dim of attention layer"
    freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
        rope_dim_list,
        rope_sizes,
        theta=10000,
        use_real=True,
        theta_rescale_factor=1,
        L_test = latents_size[0],
        enable_riflex = enable_RIFLEx
    )
    return (freqs_cos, freqs_sin)