File size: 5,775 Bytes
78360e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) 2024-2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional, Tuple, Union
import torch


# Refer to https://github.com/Angtian/VoGE/blob/main/VoGE/Utils.py
def ind_sel(target: torch.Tensor, ind: torch.Tensor, dim: int = 1):
    """

    :param target: [... (can be k or 1), n > M, ...]

    :param ind: [... (k), M]

    :param dim: dim to apply index on

    :return: sel_target [... (k), M, ...]

    """
    assert (
        len(ind.shape) > dim
    ), "Index must have the target dim, but get dim: %d, ind shape: %s" % (dim, str(ind.shape))

    target = target.expand(
        *tuple(
            [ind.shape[k] if target.shape[k] == 1 else -1 for k in range(dim)]
            + [
                -1,
            ]
            * (len(target.shape) - dim)
        )
    )

    ind_pad = ind

    if len(target.shape) > dim + 1:
        for _ in range(len(target.shape) - (dim + 1)):
            ind_pad = ind_pad.unsqueeze(-1)
        ind_pad = ind_pad.expand(*(-1,) * (dim + 1), *target.shape[(dim + 1) : :])

    return torch.gather(target, dim=dim, index=ind_pad)


def merge_final(vert_attr: torch.Tensor, weight: torch.Tensor, vert_assign: torch.Tensor):
    """



    :param vert_attr: [n, d] or [b, n, d] color or feature of each vertex

    :param weight: [b(optional), w, h, M] weight of selected vertices

    :param vert_assign: [b(optional), w, h, M] selective index

    :return:

    """
    target_dim = len(vert_assign.shape) - 1
    if len(vert_attr.shape) == 2:
        assert vert_attr.shape[0] > vert_assign.max()
        # [n, d] ind: [b(optional), w, h, M]-> [b(optional), w, h, M, d]
        sel_attr = ind_sel(
            vert_attr[(None,) * target_dim], vert_assign.type(torch.long), dim=target_dim
        )
    else:
        assert vert_attr.shape[1] > vert_assign.max()
        sel_attr = ind_sel(
            vert_attr[(slice(None),) + (None,)*(target_dim-1)], vert_assign.type(torch.long), dim=target_dim
        )

    # [b(optional), w, h, M]
    final_attr = torch.sum(sel_attr * weight.unsqueeze(-1), dim=-2)
    return final_attr


def patch_motion(

    tracks: torch.FloatTensor,  # (B, T, N, 4)

    vid: torch.FloatTensor,  # (C, T, H, W)

    temperature: float = 220.0,

    training: bool = True,

    tail_dropout: float = 0.2,

    vae_divide: tuple = (4, 16),

    topk: int = 2,

):
    with torch.no_grad():
        _, T, H, W = vid.shape
        N = tracks.shape[2]
        _, tracks, visible = torch.split(
            tracks, [1, 2, 1], dim=-1
        )  # (B, T, N, 2) | (B, T, N, 1)
        tracks_n = tracks / torch.tensor([W / min(H, W), H / min(H, W)], device=tracks.device)
        tracks_n = tracks_n.clamp(-1, 1)
        visible = visible.clamp(0, 1)

        if tail_dropout > 0 and training:
            TT = visible.shape[1]
            rrange = torch.arange(TT, device=visible.device, dtype=visible.dtype)[
                None, :, None, None
            ]
            rand_nn = torch.rand_like(visible[:, :1])
            rand_rr = torch.rand_like(visible[:, :1]) * (TT - 1)
            visible = visible * (
                (rand_nn > tail_dropout).type_as(visible)
                + (rrange < rand_rr).type_as(visible)
            ).clamp(0, 1)

        xx = torch.linspace(-W / min(H, W), W / min(H, W), W)
        yy = torch.linspace(-H / min(H, W), H / min(H, W), H)

        grid = torch.stack(torch.meshgrid(yy, xx, indexing="ij")[::-1], dim=-1).to(
            tracks.device
        )

        tracks_pad = tracks[:, 1:]
        visible_pad = visible[:, 1:]

        visible_align = visible_pad.view(T - 1, 4, *visible_pad.shape[2:]).sum(1)
        tracks_align = (tracks_pad * visible_pad).view(T - 1, 4, *tracks_pad.shape[2:]).sum(
            1
        ) / (visible_align + 1e-5)
        dist_ = (
            (tracks_align[:, None, None] - grid[None, :, :, None]).pow(2).sum(-1)
        )  # T, H, W, N
        weight = torch.exp(-dist_ * temperature) * visible_align.clamp(0, 1).view(
            T - 1, 1, 1, N
        )
        vert_weight, vert_index = torch.topk(
            weight, k=min(topk, weight.shape[-1]), dim=-1
        )

    grid_mode = "bilinear"
    point_feature = torch.nn.functional.grid_sample(
        vid[vae_divide[0]:].permute(1, 0, 2, 3)[:1],
        tracks_n[:, :1].type(vid.dtype),
        mode=grid_mode,
        padding_mode="zeros",
        align_corners=None,
    )
    point_feature = point_feature.squeeze(0).squeeze(1).permute(1, 0) # N, C=16

    out_feature = merge_final(point_feature, vert_weight, vert_index).permute(3, 0, 1, 2) # T - 1, H, W, C => C, T - 1, H, W
    out_weight = vert_weight.sum(-1) # T - 1, H, W

    # out feature -> already soft weighted
    mix_feature = out_feature + vid[vae_divide[0]:, 1:] * (1 - out_weight.clamp(0, 1))

    out_feature_full = torch.cat([vid[vae_divide[0]:, :1], mix_feature], dim=1) # C, T, H, W
    out_mask_full = torch.cat([torch.ones_like(out_weight[:1]), out_weight], dim=0)  # T, H, W
    return torch.cat([out_mask_full[None].expand(vae_divide[0], -1, -1, -1), out_feature_full], dim=0)