File size: 20,064 Bytes
78360e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import math
import os
from typing import List
from typing import Optional
from typing import Tuple
from typing import Union
import logging
import numpy as np
import torch
from diffusers.image_processor import PipelineImageInput
from diffusers.utils.torch_utils import randn_tensor
from diffusers.video_processor import VideoProcessor
from tqdm import tqdm
from .modules.model import WanModel
from .modules.t5 import T5EncoderModel
from .modules.vae import WanVAE
from wan.modules.posemb_layers import get_rotary_pos_embed
from wan.utils.utils import calculate_new_dimensions
from .utils.fm_solvers import (FlowDPMSolverMultistepScheduler,
get_sampling_sigmas, retrieve_timesteps)
from .utils.fm_solvers_unipc import FlowUniPCMultistepScheduler
class DTT2V:
def __init__(
self,
config,
checkpoint_dir,
rank=0,
model_filename = None,
model_type = None,
base_model_type = None,
save_quantized = False,
text_encoder_filename = None,
quantizeTransformer = False,
dtype = torch.bfloat16,
VAE_dtype = torch.float32,
mixed_precision_transformer = False,
):
self.device = torch.device(f"cuda")
self.config = config
self.rank = rank
self.dtype = dtype
self.num_train_timesteps = config.num_train_timesteps
self.param_dtype = config.param_dtype
self.text_encoder = T5EncoderModel(
text_len=config.text_len,
dtype=config.t5_dtype,
device=torch.device('cpu'),
checkpoint_path=text_encoder_filename,
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer),
shard_fn= None)
self.vae_stride = config.vae_stride
self.patch_size = config.patch_size
self.vae = WanVAE(
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), dtype= VAE_dtype,
device=self.device)
logging.info(f"Creating WanModel from {model_filename[-1]}")
from mmgp import offload
# model_filename = "model.safetensors"
# model_filename = "c:/temp/diffusion_pytorch_model-00001-of-00006.safetensors"
base_config_file = f"configs/{base_model_type}.json"
forcedConfigPath = base_config_file if len(model_filename) > 1 else None
self.model = offload.fast_load_transformers_model(model_filename, modelClass=WanModel,do_quantize= quantizeTransformer, writable_tensors= False , forcedConfigPath=forcedConfigPath)
# offload.load_model_data(self.model, "recam.ckpt")
# self.model.cpu()
# dtype = torch.float16
self.model.lock_layers_dtypes(torch.float32 if mixed_precision_transformer else dtype)
offload.change_dtype(self.model, dtype, True)
# offload.save_model(self.model, "sky_reels2_diffusion_forcing_1.3B_mbf16.safetensors", config_file_path="config.json")
# offload.save_model(self.model, "sky_reels2_diffusion_forcing_720p_14B_quanto_mbf16_int8.safetensors", do_quantize= True, config_file_path="c:/temp/config _df720.json")
# offload.save_model(self.model, "rtfp16_int8.safetensors", do_quantize= "config.json")
self.model.eval().requires_grad_(False)
if save_quantized:
from wgp import save_quantized_model
save_quantized_model(self.model, model_type, model_filename[0], dtype, base_config_file)
self.scheduler = FlowUniPCMultistepScheduler()
@property
def do_classifier_free_guidance(self) -> bool:
return self._guidance_scale > 1
def encode_image(
self, image_start: PipelineImageInput, height: int, width: int, num_frames: int, tile_size = 0, causal_block_size = 0
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
# prefix_video
prefix_video = np.array(image_start.resize((width, height))).transpose(2, 0, 1)
prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1)
if prefix_video.dtype == torch.uint8:
prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0
prefix_video = prefix_video.to(self.device)
prefix_video = [self.vae.encode(prefix_video.unsqueeze(0), tile_size = tile_size)[0]] # [(c, f, h, w)]
if prefix_video[0].shape[1] % causal_block_size != 0:
truncate_len = prefix_video[0].shape[1] % causal_block_size
print("the length of prefix video is truncated for the casual block size alignment.")
prefix_video[0] = prefix_video[0][:, : prefix_video[0].shape[1] - truncate_len]
predix_video_latent_length = prefix_video[0].shape[1]
return prefix_video, predix_video_latent_length
def prepare_latents(
self,
shape: Tuple[int],
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
) -> torch.Tensor:
return randn_tensor(shape, generator, device=device, dtype=dtype)
def generate_timestep_matrix(
self,
num_frames,
step_template,
base_num_frames,
ar_step=5,
num_pre_ready=0,
casual_block_size=1,
shrink_interval_with_mask=False,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, list[tuple]]:
step_matrix, step_index = [], []
update_mask, valid_interval = [], []
num_iterations = len(step_template) + 1
num_frames_block = num_frames // casual_block_size
base_num_frames_block = base_num_frames // casual_block_size
if base_num_frames_block < num_frames_block:
infer_step_num = len(step_template)
gen_block = base_num_frames_block
min_ar_step = infer_step_num / gen_block
assert ar_step >= min_ar_step, f"ar_step should be at least {math.ceil(min_ar_step)} in your setting"
# print(num_frames, step_template, base_num_frames, ar_step, num_pre_ready, casual_block_size, num_frames_block, base_num_frames_block)
step_template = torch.cat(
[
torch.tensor([999], dtype=torch.int64, device=step_template.device),
step_template.long(),
torch.tensor([0], dtype=torch.int64, device=step_template.device),
]
) # to handle the counter in row works starting from 1
pre_row = torch.zeros(num_frames_block, dtype=torch.long)
if num_pre_ready > 0:
pre_row[: num_pre_ready // casual_block_size] = num_iterations
while torch.all(pre_row >= (num_iterations - 1)) == False:
new_row = torch.zeros(num_frames_block, dtype=torch.long)
for i in range(num_frames_block):
if i == 0 or pre_row[i - 1] >= (
num_iterations - 1
): # the first frame or the last frame is completely denoised
new_row[i] = pre_row[i] + 1
else:
new_row[i] = new_row[i - 1] - ar_step
new_row = new_row.clamp(0, num_iterations)
update_mask.append(
(new_row != pre_row) & (new_row != num_iterations)
) # False: no need to update, True: need to update
step_index.append(new_row)
step_matrix.append(step_template[new_row])
pre_row = new_row
# for long video we split into several sequences, base_num_frames is set to the model max length (for training)
terminal_flag = base_num_frames_block
if shrink_interval_with_mask:
idx_sequence = torch.arange(num_frames_block, dtype=torch.int64)
update_mask = update_mask[0]
update_mask_idx = idx_sequence[update_mask]
last_update_idx = update_mask_idx[-1].item()
terminal_flag = last_update_idx + 1
# for i in range(0, len(update_mask)):
for curr_mask in update_mask:
if terminal_flag < num_frames_block and curr_mask[terminal_flag]:
terminal_flag += 1
valid_interval.append((max(terminal_flag - base_num_frames_block, 0), terminal_flag))
step_update_mask = torch.stack(update_mask, dim=0)
step_index = torch.stack(step_index, dim=0)
step_matrix = torch.stack(step_matrix, dim=0)
if casual_block_size > 1:
step_update_mask = step_update_mask.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
step_index = step_index.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
step_matrix = step_matrix.unsqueeze(-1).repeat(1, 1, casual_block_size).flatten(1).contiguous()
valid_interval = [(s * casual_block_size, e * casual_block_size) for s, e in valid_interval]
return step_matrix, step_index, step_update_mask, valid_interval
@torch.no_grad()
def generate(
self,
input_prompt: Union[str, List[str]],
n_prompt: Union[str, List[str]] = "",
image_start: PipelineImageInput = None,
input_video = None,
height: int = 480,
width: int = 832,
fit_into_canvas = True,
frame_num: int = 97,
sampling_steps: int = 50,
shift: float = 1.0,
guide_scale: float = 5.0,
seed: float = 0.0,
overlap_noise: int = 0,
ar_step: int = 5,
causal_block_size: int = 5,
causal_attention: bool = True,
fps: int = 24,
VAE_tile_size = 0,
joint_pass = False,
slg_layers = None,
slg_start = 0.0,
slg_end = 1.0,
callback = None,
**bbargs
):
self._interrupt = False
generator = torch.Generator(device=self.device)
generator.manual_seed(seed)
self._guidance_scale = guide_scale
frame_num = max(17, frame_num) # must match causal_block_size for value of 5
frame_num = int( round( (frame_num - 17) / 20)* 20 + 17 )
if ar_step == 0:
causal_block_size = 1
causal_attention = False
i2v_extra_kwrags = {}
prefix_video = None
predix_video_latent_length = 0
if input_video != None:
_ , _ , height, width = input_video.shape
elif image_start != None:
image_start = image_start
frame_width, frame_height = image_start.size
height, width = calculate_new_dimensions(height, width, frame_height, frame_width, fit_into_canvas)
image_start = np.array(image_start.resize((width, height))).transpose(2, 0, 1)
latent_length = (frame_num - 1) // 4 + 1
latent_height = height // 8
latent_width = width // 8
if self._interrupt:
return None
prompt_embeds = self.text_encoder([input_prompt], self.device)[0]
prompt_embeds = prompt_embeds.to(self.dtype).to(self.device)
if self.do_classifier_free_guidance:
negative_prompt_embeds = self.text_encoder([n_prompt], self.device)[0]
negative_prompt_embeds = negative_prompt_embeds.to(self.dtype).to(self.device)
if self._interrupt:
return None
self.scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift)
init_timesteps = self.scheduler.timesteps
fps_embeds = [fps] #* prompt_embeds[0].shape[0]
fps_embeds = [0 if i == 16 else 1 for i in fps_embeds]
output_video = input_video
if image_start is not None or output_video is not None: # i !=0
if output_video is not None:
prefix_video = output_video.to(self.device)
else:
causal_block_size = 1
causal_attention = False
ar_step = 0
prefix_video = image_start
prefix_video = torch.tensor(prefix_video).unsqueeze(1) # .to(image_embeds.dtype).unsqueeze(1)
if prefix_video.dtype == torch.uint8:
prefix_video = (prefix_video.float() / (255.0 / 2.0)) - 1.0
prefix_video = prefix_video.to(self.device)
prefix_video = self.vae.encode(prefix_video.unsqueeze(0))[0] # [(c, f, h, w)]
predix_video_latent_length = prefix_video.shape[1]
truncate_len = predix_video_latent_length % causal_block_size
if truncate_len != 0:
if truncate_len == predix_video_latent_length:
causal_block_size = 1
causal_attention = False
ar_step = 0
else:
print("the length of prefix video is truncated for the casual block size alignment.")
predix_video_latent_length -= truncate_len
prefix_video = prefix_video[:, : predix_video_latent_length]
base_num_frames_iter = latent_length
latent_shape = [16, base_num_frames_iter, latent_height, latent_width]
latents = self.prepare_latents(
latent_shape, dtype=torch.float32, device=self.device, generator=generator
)
if prefix_video is not None:
latents[:, :predix_video_latent_length] = prefix_video.to(torch.float32)
step_matrix, _, step_update_mask, valid_interval = self.generate_timestep_matrix(
base_num_frames_iter,
init_timesteps,
base_num_frames_iter,
ar_step,
predix_video_latent_length,
causal_block_size,
)
sample_schedulers = []
for _ in range(base_num_frames_iter):
sample_scheduler = FlowUniPCMultistepScheduler(
num_train_timesteps=1000, shift=1, use_dynamic_shifting=False
)
sample_scheduler.set_timesteps(sampling_steps, device=self.device, shift=shift)
sample_schedulers.append(sample_scheduler)
sample_schedulers_counter = [0] * base_num_frames_iter
updated_num_steps= len(step_matrix)
if callback != None:
callback(-1, None, True, override_num_inference_steps = updated_num_steps)
if self.model.enable_cache:
x_count = 2 if self.do_classifier_free_guidance else 1
self.model.previous_residual = [None] * x_count
time_steps_comb = []
self.model.num_steps = updated_num_steps
for i, timestep_i in enumerate(step_matrix):
valid_interval_start, valid_interval_end = valid_interval[i]
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
if overlap_noise > 0 and valid_interval_start < predix_video_latent_length:
timestep[:, valid_interval_start:predix_video_latent_length] = overlap_noise
time_steps_comb.append(timestep)
self.model.compute_teacache_threshold(self.model.cache_start_step, time_steps_comb, self.model.teacache_multiplier)
del time_steps_comb
from mmgp import offload
freqs = get_rotary_pos_embed(latents.shape[1 :], enable_RIFLEx= False)
kwrags = {
"freqs" :freqs,
"fps" : fps_embeds,
"causal_block_size" : causal_block_size,
"causal_attention" : causal_attention,
"callback" : callback,
"pipeline" : self,
}
kwrags.update(i2v_extra_kwrags)
for i, timestep_i in enumerate(tqdm(step_matrix)):
kwrags["slg_layers"] = slg_layers if int(slg_start * updated_num_steps) <= i < int(slg_end * updated_num_steps) else None
offload.set_step_no_for_lora(self.model, i)
update_mask_i = step_update_mask[i]
valid_interval_start, valid_interval_end = valid_interval[i]
timestep = timestep_i[None, valid_interval_start:valid_interval_end].clone()
latent_model_input = latents[:, valid_interval_start:valid_interval_end, :, :].clone()
if overlap_noise > 0 and valid_interval_start < predix_video_latent_length:
noise_factor = 0.001 * overlap_noise
timestep_for_noised_condition = overlap_noise
latent_model_input[:, valid_interval_start:predix_video_latent_length] = (
latent_model_input[:, valid_interval_start:predix_video_latent_length]
* (1.0 - noise_factor)
+ torch.randn_like(
latent_model_input[:, valid_interval_start:predix_video_latent_length]
)
* noise_factor
)
timestep[:, valid_interval_start:predix_video_latent_length] = timestep_for_noised_condition
kwrags.update({
"t" : timestep,
"current_step" : i,
})
# with torch.autocast(device_type="cuda"):
if True:
if not self.do_classifier_free_guidance:
noise_pred = self.model(
x=[latent_model_input],
context=[prompt_embeds],
**kwrags,
)[0]
if self._interrupt:
return None
noise_pred= noise_pred.to(torch.float32)
else:
if joint_pass:
noise_pred_cond, noise_pred_uncond = self.model(
x=[latent_model_input, latent_model_input],
context= [prompt_embeds, negative_prompt_embeds],
**kwrags,
)
if self._interrupt:
return None
else:
noise_pred_cond = self.model(
x=[latent_model_input],
x_id=0,
context=[prompt_embeds],
**kwrags,
)[0]
if self._interrupt:
return None
noise_pred_uncond = self.model(
x=[latent_model_input],
x_id=1,
context=[negative_prompt_embeds],
**kwrags,
)[0]
if self._interrupt:
return None
noise_pred = noise_pred_uncond + guide_scale * (noise_pred_cond - noise_pred_uncond)
del noise_pred_cond, noise_pred_uncond
for idx in range(valid_interval_start, valid_interval_end):
if update_mask_i[idx].item():
latents[:, idx] = sample_schedulers[idx].step(
noise_pred[:, idx - valid_interval_start],
timestep_i[idx],
latents[:, idx],
return_dict=False,
generator=generator,
)[0]
sample_schedulers_counter[idx] += 1
if callback is not None:
callback(i, latents.squeeze(0), False)
x0 = latents.unsqueeze(0)
videos = [self.vae.decode(x0, tile_size= VAE_tile_size)[0]]
output_video = videos[0].clamp(-1, 1).cpu() # c, f, h, w
return output_video
|