File size: 13,978 Bytes
78360e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.

import os
import cv2
import torch
import numpy as np
from . import util
from .wholebody import Wholebody, HWC3, resize_image
from PIL import Image
import onnxruntime as ort
from concurrent.futures import ThreadPoolExecutor
import threading

os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"

def convert_to_numpy(image):
    if isinstance(image, Image.Image):
        image = np.array(image)
    elif isinstance(image, torch.Tensor):
        image = image.detach().cpu().numpy()
    elif isinstance(image, np.ndarray):
        image = image.copy()
    else:
        raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
    return image

def draw_pose(pose, H, W, use_hand=False, use_body=False, use_face=False):
    bodies = pose['bodies']
    faces = pose['faces']
    hands = pose['hands']
    candidate = bodies['candidate']
    subset = bodies['subset']
    canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)

    if use_body:
        canvas = util.draw_bodypose(canvas, candidate, subset)
    if use_hand:
        canvas = util.draw_handpose(canvas, hands)
    if use_face:
        canvas = util.draw_facepose(canvas, faces)

    return canvas


class OptimizedWholebody:
    """Optimized version of Wholebody for faster serial processing"""
    def __init__(self, onnx_det, onnx_pose, device='cuda:0'):
        providers = ['CPUExecutionProvider'] if device == 'cpu' else ['CUDAExecutionProvider']
        self.session_det = ort.InferenceSession(path_or_bytes=onnx_det, providers=providers)
        self.session_pose = ort.InferenceSession(path_or_bytes=onnx_pose, providers=providers)
        self.device = device
        
        # Pre-allocate session options for better performance
        self.session_det.set_providers(providers)
        self.session_pose.set_providers(providers)
        
        # Get input names once to avoid repeated lookups
        self.det_input_name = self.session_det.get_inputs()[0].name
        self.pose_input_name = self.session_pose.get_inputs()[0].name
        self.pose_output_names = [out.name for out in self.session_pose.get_outputs()]
    
    def __call__(self, ori_img):
        from .onnxdet import inference_detector
        from .onnxpose import inference_pose
        
        det_result = inference_detector(self.session_det, ori_img)
        keypoints, scores = inference_pose(self.session_pose, det_result, ori_img)

        keypoints_info = np.concatenate(
            (keypoints, scores[..., None]), axis=-1)
        # compute neck joint
        neck = np.mean(keypoints_info[:, [5, 6]], axis=1)
        # neck score when visualizing pred
        neck[:, 2:4] = np.logical_and(
            keypoints_info[:, 5, 2:4] > 0.3,
            keypoints_info[:, 6, 2:4] > 0.3).astype(int)
        new_keypoints_info = np.insert(
            keypoints_info, 17, neck, axis=1)
        mmpose_idx = [
            17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3
        ]
        openpose_idx = [
            1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17
        ]
        new_keypoints_info[:, openpose_idx] = \
            new_keypoints_info[:, mmpose_idx]
        keypoints_info = new_keypoints_info

        keypoints, scores = keypoints_info[
            ..., :2], keypoints_info[..., 2]
        
        return keypoints, scores, det_result


class PoseAnnotator:
    def __init__(self, cfg, device=None):
        onnx_det = cfg['DETECTION_MODEL']
        onnx_pose = cfg['POSE_MODEL']
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
        self.pose_estimation = Wholebody(onnx_det, onnx_pose, device=self.device)
        self.resize_size = cfg.get("RESIZE_SIZE", 1024)
        self.use_body = cfg.get('USE_BODY', True)
        self.use_face = cfg.get('USE_FACE', True)
        self.use_hand = cfg.get('USE_HAND', True)

    @torch.no_grad()
    @torch.inference_mode
    def forward(self, image):
        image = convert_to_numpy(image)
        input_image = HWC3(image[..., ::-1])
        return self.process(resize_image(input_image, self.resize_size), image.shape[:2])

    def process(self, ori_img, ori_shape):
        ori_h, ori_w = ori_shape
        ori_img = ori_img.copy()
        H, W, C = ori_img.shape
        with torch.no_grad():
            candidate, subset, det_result = self.pose_estimation(ori_img)
            nums, keys, locs = candidate.shape
            candidate[..., 0] /= float(W)
            candidate[..., 1] /= float(H)
            body = candidate[:, :18].copy()
            body = body.reshape(nums * 18, locs)
            score = subset[:, :18]
            for i in range(len(score)):
                for j in range(len(score[i])):
                    if score[i][j] > 0.3:
                        score[i][j] = int(18 * i + j)
                    else:
                        score[i][j] = -1

            un_visible = subset < 0.3
            candidate[un_visible] = -1

            foot = candidate[:, 18:24]
            faces = candidate[:, 24:92]
            hands = candidate[:, 92:113]
            hands = np.vstack([hands, candidate[:, 113:]])

            bodies = dict(candidate=body, subset=score)
            pose = dict(bodies=bodies, hands=hands, faces=faces)

            ret_data = {}
            if self.use_body:
                detected_map_body = draw_pose(pose, H, W, use_body=True)
                detected_map_body = cv2.resize(detected_map_body[..., ::-1], (ori_w, ori_h),
                                               interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA)
                ret_data["detected_map_body"] = detected_map_body

            if self.use_face:
                detected_map_face = draw_pose(pose, H, W, use_face=True)
                detected_map_face = cv2.resize(detected_map_face[..., ::-1], (ori_w, ori_h),
                                               interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA)
                ret_data["detected_map_face"] = detected_map_face

            if self.use_body and self.use_face:
                detected_map_bodyface = draw_pose(pose, H, W, use_body=True, use_face=True)
                detected_map_bodyface = cv2.resize(detected_map_bodyface[..., ::-1], (ori_w, ori_h),
                                                   interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA)
                ret_data["detected_map_bodyface"] = detected_map_bodyface

            if self.use_hand and self.use_body and self.use_face:
                detected_map_handbodyface = draw_pose(pose, H, W, use_hand=True, use_body=True, use_face=True)
                detected_map_handbodyface = cv2.resize(detected_map_handbodyface[..., ::-1], (ori_w, ori_h),
                                                       interpolation=cv2.INTER_LANCZOS4 if ori_h * ori_w > H * W else cv2.INTER_AREA)
                ret_data["detected_map_handbodyface"] = detected_map_handbodyface

            # convert_size
            if det_result.shape[0] > 0:
                w_ratio, h_ratio = ori_w / W, ori_h / H
                det_result[..., ::2] *= h_ratio
                det_result[..., 1::2] *= w_ratio
                det_result = det_result.astype(np.int32)
            return ret_data, det_result


class OptimizedPoseAnnotator(PoseAnnotator):
    """Optimized version using improved Wholebody class"""
    def __init__(self, cfg, device=None):
        onnx_det = cfg['DETECTION_MODEL']
        onnx_pose = cfg['POSE_MODEL']
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
        self.pose_estimation = OptimizedWholebody(onnx_det, onnx_pose, device=self.device)
        self.resize_size = cfg.get("RESIZE_SIZE", 1024)
        self.use_body = cfg.get('USE_BODY', True)
        self.use_face = cfg.get('USE_FACE', True)
        self.use_hand = cfg.get('USE_HAND', True)


class PoseBodyFaceAnnotator(PoseAnnotator):
    def __init__(self, cfg):
        super().__init__(cfg)
        self.use_body, self.use_face, self.use_hand = True, True, False
    
    @torch.no_grad()
    @torch.inference_mode
    def forward(self, image):
        ret_data, det_result = super().forward(image)
        return ret_data['detected_map_bodyface']


class OptimizedPoseBodyFaceVideoAnnotator:
    """Optimized video annotator with multiple optimization strategies"""
    def __init__(self, cfg, num_workers=5, chunk_size=8):
        self.cfg = cfg
        self.num_workers = num_workers
        self.chunk_size = chunk_size
        self.use_body, self.use_face, self.use_hand = True, True, False
        
        # Initialize one annotator per worker to avoid ONNX session conflicts
        self.annotators = []
        for _ in range(num_workers):
            annotator = OptimizedPoseAnnotator(cfg)
            annotator.use_body, annotator.use_face, annotator.use_hand = True, True, False
            self.annotators.append(annotator)
        
        self._current_worker = 0
        self._worker_lock = threading.Lock()
    
    def _get_annotator(self):
        """Get next available annotator in round-robin fashion"""
        with self._worker_lock:
            annotator = self.annotators[self._current_worker]
            self._current_worker = (self._current_worker + 1) % len(self.annotators)
            return annotator
    
    def _process_single_frame(self, frame_data):
        """Process a single frame with error handling"""
        frame, frame_idx = frame_data
        try:
            annotator = self._get_annotator()
            
            # Convert frame
            frame = convert_to_numpy(frame)
            input_image = HWC3(frame[..., ::-1])
            resized_image = resize_image(input_image, annotator.resize_size)
            
            # Process
            ret_data, _ = annotator.process(resized_image, frame.shape[:2])
            
            if 'detected_map_bodyface' in ret_data:
                return frame_idx, ret_data['detected_map_bodyface']
            else:
                # Create empty frame if no detection
                h, w = frame.shape[:2]
                return frame_idx, np.zeros((h, w, 3), dtype=np.uint8)
                
        except Exception as e:
            print(f"Error processing frame {frame_idx}: {e}")
            # Return empty frame on error
            h, w = frame.shape[:2] if hasattr(frame, 'shape') else (480, 640)
            return frame_idx, np.zeros((h, w, 3), dtype=np.uint8)
    
    def forward(self, frames):
        """Process video frames with optimizations"""
        if len(frames) == 0:
            return []
        
        # For small number of frames, use serial processing to avoid threading overhead
        if len(frames) <= 4:
            annotator = self.annotators[0]
            ret_frames = []
            for frame in frames:
                frame = convert_to_numpy(frame)
                input_image = HWC3(frame[..., ::-1])
                resized_image = resize_image(input_image, annotator.resize_size)
                ret_data, _ = annotator.process(resized_image, frame.shape[:2])
                
                if 'detected_map_bodyface' in ret_data:
                    ret_frames.append(ret_data['detected_map_bodyface'])
                else:
                    h, w = frame.shape[:2]
                    ret_frames.append(np.zeros((h, w, 3), dtype=np.uint8))
            return ret_frames
        
        # For larger videos, use parallel processing
        frame_data = [(frame, idx) for idx, frame in enumerate(frames)]
        results = [None] * len(frames)
        
        # Process in chunks to manage memory
        for chunk_start in range(0, len(frame_data), self.chunk_size * self.num_workers):
            chunk_end = min(chunk_start + self.chunk_size * self.num_workers, len(frame_data))
            chunk_data = frame_data[chunk_start:chunk_end]
            
            with ThreadPoolExecutor(max_workers=self.num_workers) as executor:
                chunk_results = list(executor.map(self._process_single_frame, chunk_data))
            
            # Store results in correct order
            for frame_idx, result in chunk_results:
                results[frame_idx] = result
        
        return results


# Alias for backward compatibility
class PoseBodyFaceVideoAnnotator(OptimizedPoseBodyFaceVideoAnnotator):
    """Backward compatible class name"""
    def __init__(self, cfg, num_workers=2, chunk_size=8):
        # Use optimized version with conservative settings
        super().__init__(cfg, num_workers=num_workers, chunk_size=chunk_size)


# Keep the existing utility functions
import imageio

def save_one_video(file_path, videos, fps=8, quality=8, macro_block_size=None):
    try:
        video_writer = imageio.get_writer(file_path, fps=fps, codec='libx264', quality=quality, macro_block_size=macro_block_size)
        for frame in videos:
            video_writer.append_data(frame)
        video_writer.close()
        return True
    except Exception as e:
        print(f"Video save error: {e}")
        return False
    
def get_frames(video_path):
    frames = []
    cap = cv2.VideoCapture(video_path)
    fps = cap.get(cv2.CAP_PROP_FPS)
    print("video fps: " + str(fps))
    i = 0
    while cap.isOpened():
        ret, frame = cap.read()
        if ret == False:
            break
        frames.append(frame)
        i += 1
    cap.release()
    cv2.destroyAllWindows()
    return frames, fps