Spaces:
Running
Running
File size: 67,100 Bytes
6d9621e ca90f03 6d9621e ae28116 6d9621e ae28116 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e 681e68f ca90f03 2a151b4 ca90f03 2a151b4 ca90f03 abfb555 ca90f03 15d8fbe 681e68f ca90f03 2a151b4 ca90f03 15d8fbe abfb555 15d8fbe abfb555 15d8fbe ca90f03 9a3747a ca90f03 15d8fbe abfb555 ca90f03 abfb555 ca90f03 abfb555 ca90f03 15d8fbe abfb555 ca90f03 9a3747a ca90f03 abfb555 15d8fbe abfb555 15d8fbe abfb555 15d8fbe abfb555 15d8fbe abfb555 15d8fbe ca90f03 abfb555 15d8fbe ca90f03 15d8fbe abfb555 ca90f03 6d9621e 07f65c1 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e ae28116 abfb555 6d9621e 681e68f 6d9621e ae28116 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 ae28116 abfb555 ae28116 abfb555 ae28116 abfb555 ae28116 15d8fbe abfb555 15d8fbe abfb555 15d8fbe ae28116 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 ae28116 6d9621e abfb555 6d9621e abfb555 6d9621e abfb555 6d9621e 681e68f ae28116 abfb555 ae28116 abfb555 ae28116 abfb555 ae28116 15d8fbe abfb555 ae28116 abfb555 ae28116 abfb555 15d8fbe abfb555 15d8fbe ae28116 15d8fbe abfb555 ae28116 abfb555 15d8fbe ae28116 abfb555 ae28116 abfb555 15d8fbe ae28116 15d8fbe abfb555 ae28116 6d9621e 681e68f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 |
"""
MOUSE Workflow - Visual Workflow Builder with UI Execution
@Powered by VIDraft
✓ Visual workflow designer with drag-and-drop
✓ Import/Export JSON with copy-paste support
✓ Auto-generate UI from workflow for end-user execution
"""
import os, json, typing, tempfile, traceback
import gradio as gr
from gradio_workflowbuilder import WorkflowBuilder
# Optional imports for LLM APIs
try:
from openai import OpenAI
OPENAI_AVAILABLE = True
except ImportError:
OPENAI_AVAILABLE = False
print("OpenAI library not available. Install with: pip install openai")
# Anthropic 관련 코드 주석 처리
# try:
# import anthropic
# ANTHROPIC_AVAILABLE = True
# except ImportError:
# ANTHROPIC_AVAILABLE = False
# print("Anthropic library not available. Install with: pip install anthropic")
ANTHROPIC_AVAILABLE = False
try:
import requests
REQUESTS_AVAILABLE = True
except ImportError:
REQUESTS_AVAILABLE = False
print("Requests library not available. Install with: pip install requests")
try:
from huggingface_hub import HfApi, create_repo, upload_file
HF_HUB_AVAILABLE = True
except ImportError:
HF_HUB_AVAILABLE = False
print("Huggingface Hub not available. Install with: pip install huggingface-hub")
# -------------------------------------------------------------------
# 🛠️ 헬퍼 함수들
# -------------------------------------------------------------------
def export_pretty(data: typing.Dict[str, typing.Any]) -> str:
return json.dumps(data, indent=2, ensure_ascii=False) if data else "No workflow to export"
def export_file(data: typing.Dict[str, typing.Any]) -> typing.Optional[str]:
"""워크플로우를 JSON 파일로 내보내기"""
if not data:
return None
try:
# 임시 파일 생성
fd, path = tempfile.mkstemp(suffix=".json", prefix="workflow_", text=True)
with os.fdopen(fd, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
return path
except Exception as e:
print(f"Error exporting file: {e}")
return None
def load_json_from_text_or_file(json_text: str, file_obj) -> typing.Tuple[typing.Dict[str, typing.Any], str]:
"""텍스트 또는 파일에서 JSON 로드"""
# 파일이 있으면 파일 우선
if file_obj is not None:
try:
with open(file_obj.name, "r", encoding="utf-8") as f:
json_text = f.read()
except Exception as e:
return None, f"❌ Error reading file: {str(e)}"
# JSON 텍스트가 없거나 비어있으면
if not json_text or json_text.strip() == "":
return None, "No JSON data provided"
try:
# JSON 파싱
data = json.loads(json_text.strip())
# 데이터 검증
if not isinstance(data, dict):
return None, "Invalid format: not a dictionary"
# 필수 필드 확인
if 'nodes' not in data:
data['nodes'] = []
if 'edges' not in data:
data['edges'] = []
nodes_count = len(data.get('nodes', []))
edges_count = len(data.get('edges', []))
return data, f"✅ Loaded: {nodes_count} nodes, {edges_count} edges"
except json.JSONDecodeError as e:
return None, f"❌ JSON parsing error: {str(e)}"
except Exception as e:
return None, f"❌ Error: {str(e)}"
def create_sample_workflow(example_type="basic"):
"""샘플 워크플로우 생성"""
if example_type == "basic":
# 기본 예제: 간단한 Q&A - VIDraft 사용
return {
"nodes": [
{
"id": "input_1",
"type": "ChatInput",
"position": {"x": 100, "y": 200},
"data": {
"label": "User Question",
"template": {
"input_value": {"value": "What is the capital of Korea?"}
}
}
},
{
"id": "llm_1",
"type": "llmNode",
"position": {"x": 400, "y": 200},
"data": {
"label": "AI Processing",
"template": {
"provider": {"value": "VIDraft"}, # 기본값을 VIDraft로 변경
"model": {"value": "Gemma-3-r1984-27B"},
"temperature": {"value": 0.7},
"system_prompt": {"value": "You are a helpful assistant."}
}
}
},
{
"id": "output_1",
"type": "ChatOutput",
"position": {"x": 700, "y": 200},
"data": {"label": "Answer"}
}
],
"edges": [
{"id": "e1", "source": "input_1", "target": "llm_1"},
{"id": "e2", "source": "llm_1", "target": "output_1"}
]
}
elif example_type == "vidraft":
# VIDraft 예제
return {
"nodes": [
{
"id": "input_1",
"type": "ChatInput",
"position": {"x": 100, "y": 200},
"data": {
"label": "User Input",
"template": {
"input_value": {"value": "AI와 머신러닝의 차이점을 설명해주세요."}
}
}
},
{
"id": "llm_1",
"type": "llmNode",
"position": {"x": 400, "y": 200},
"data": {
"label": "VIDraft AI (Gemma)",
"template": {
"provider": {"value": "VIDraft"},
"model": {"value": "Gemma-3-r1984-27B"},
"temperature": {"value": 0.8},
"system_prompt": {"value": "당신은 전문적이고 친절한 AI 교육자입니다. 복잡한 개념을 쉽게 설명해주세요."}
}
}
},
{
"id": "output_1",
"type": "ChatOutput",
"position": {"x": 700, "y": 200},
"data": {"label": "AI Explanation"}
}
],
"edges": [
{"id": "e1", "source": "input_1", "target": "llm_1"},
{"id": "e2", "source": "llm_1", "target": "output_1"}
]
}
elif example_type == "multi_input":
# 다중 입력 예제
return {
"nodes": [
{
"id": "name_input",
"type": "textInput",
"position": {"x": 100, "y": 100},
"data": {
"label": "Your Name",
"template": {
"input_value": {"value": "John"}
}
}
},
{
"id": "topic_input",
"type": "textInput",
"position": {"x": 100, "y": 250},
"data": {
"label": "Topic",
"template": {
"input_value": {"value": "Python programming"}
}
}
},
{
"id": "level_input",
"type": "textInput",
"position": {"x": 100, "y": 400},
"data": {
"label": "Skill Level",
"template": {
"input_value": {"value": "beginner"}
}
}
},
{
"id": "combiner",
"type": "textNode",
"position": {"x": 350, "y": 250},
"data": {
"label": "Combine Inputs",
"template": {
"text": {"value": "Create a personalized learning plan"}
}
}
},
{
"id": "llm_1",
"type": "llmNode",
"position": {"x": 600, "y": 250},
"data": {
"label": "Generate Learning Plan",
"template": {
"provider": {"value": "VIDraft"}, # 기본값을 VIDraft로 변경
"model": {"value": "Gemma-3-r1984-27B"},
"temperature": {"value": 0.7},
"system_prompt": {"value": "You are an expert educational consultant. Create personalized learning plans based on the user's name, topic of interest, and skill level."}
}
}
},
{
"id": "output_1",
"type": "ChatOutput",
"position": {"x": 900, "y": 250},
"data": {"label": "Your Learning Plan"}
}
],
"edges": [
{"id": "e1", "source": "name_input", "target": "combiner"},
{"id": "e2", "source": "topic_input", "target": "combiner"},
{"id": "e3", "source": "level_input", "target": "combiner"},
{"id": "e4", "source": "combiner", "target": "llm_1"},
{"id": "e5", "source": "llm_1", "target": "output_1"}
]
}
elif example_type == "chain":
# 체인 처리 예제
return {
"nodes": [
{
"id": "input_1",
"type": "ChatInput",
"position": {"x": 50, "y": 200},
"data": {
"label": "Original Text",
"template": {
"input_value": {"value": "The quick brown fox jumps over the lazy dog."}
}
}
},
{
"id": "translator",
"type": "llmNode",
"position": {"x": 300, "y": 200},
"data": {
"label": "Translate to Korean",
"template": {
"provider": {"value": "VIDraft"},
"model": {"value": "Gemma-3-r1984-27B"},
"temperature": {"value": 0.3},
"system_prompt": {"value": "You are a professional translator. Translate the given English text to Korean accurately."}
}
}
},
{
"id": "analyzer",
"type": "llmNode",
"position": {"x": 600, "y": 200},
"data": {
"label": "Analyze Translation",
"template": {
"provider": {"value": "OpenAI"},
"model": {"value": "gpt-4.1-mini"},
"temperature": {"value": 0.5},
"system_prompt": {"value": "You are a linguistic expert. Analyze the Korean translation and explain its nuances and cultural context."}
}
}
},
{
"id": "output_translation",
"type": "ChatOutput",
"position": {"x": 450, "y": 350},
"data": {"label": "Korean Translation"}
},
{
"id": "output_analysis",
"type": "ChatOutput",
"position": {"x": 900, "y": 200},
"data": {"label": "Translation Analysis"}
}
],
"edges": [
{"id": "e1", "source": "input_1", "target": "translator"},
{"id": "e2", "source": "translator", "target": "analyzer"},
{"id": "e3", "source": "translator", "target": "output_translation"},
{"id": "e4", "source": "analyzer", "target": "output_analysis"}
]
}
# 기본값은 basic
return create_sample_workflow("basic")
# 배포를 위한 독립 앱 생성 함수
def generate_standalone_app(workflow_data: dict, app_name: str, app_description: str) -> str:
"""워크플로우를 독립적인 Gradio 앱으로 변환"""
# JSON 데이터를 문자열로 변환
workflow_json = json.dumps(workflow_data, indent=2)
app_code = f'''"""
{app_name}
{app_description}
Generated by MOUSE Workflow
"""
import os
import json
import gradio as gr
import requests
# Workflow configuration
WORKFLOW_DATA = {workflow_json}
def execute_workflow(*input_values):
"""Execute the workflow with given inputs"""
# API keys from environment
vidraft_token = os.getenv("FRIENDLI_TOKEN")
openai_key = os.getenv("OPENAI_API_KEY")
nodes = WORKFLOW_DATA.get("nodes", [])
edges = WORKFLOW_DATA.get("edges", [])
results = {{}}
# Get input nodes
input_nodes = [n for n in nodes if n.get("type") in ["ChatInput", "textInput", "Input", "numberInput"]]
# Map inputs to node IDs
for i, node in enumerate(input_nodes):
if i < len(input_values):
results[node["id"]] = input_values[i]
# Process nodes
for node in nodes:
node_id = node.get("id")
node_type = node.get("type", "")
node_data = node.get("data", {{}})
template = node_data.get("template", {{}})
if node_type == "textNode":
# Combine connected inputs
base_text = template.get("text", {{}}).get("value", "")
connected_inputs = []
for edge in edges:
if edge.get("target") == node_id:
source_id = edge.get("source")
if source_id in results:
connected_inputs.append(f"{{source_id}}: {{results[source_id]}}")
if connected_inputs:
results[node_id] = f"{{base_text}}\\n\\nInputs:\\n" + "\\n".join(connected_inputs)
else:
results[node_id] = base_text
elif node_type in ["llmNode", "OpenAIModel", "ChatModel"]:
# Get provider and model - VIDraft as default
provider = template.get("provider", {{}}).get("value", "VIDraft")
if provider not in ["VIDraft", "OpenAI"]:
provider = "VIDraft" # Default to VIDraft
temperature = template.get("temperature", {{}}).get("value", 0.7)
system_prompt = template.get("system_prompt", {{}}).get("value", "")
# Get input text
input_text = ""
for edge in edges:
if edge.get("target") == node_id:
source_id = edge.get("source")
if source_id in results:
input_text = results[source_id]
break
# Call API
if provider == "OpenAI" and openai_key:
try:
from openai import OpenAI
client = OpenAI(api_key=openai_key)
messages = []
if system_prompt:
messages.append({{"role": "system", "content": system_prompt}})
messages.append({{"role": "user", "content": input_text}})
response = client.chat.completions.create(
model="gpt-4.1-mini",
messages=messages,
temperature=temperature,
max_tokens=1000
)
results[node_id] = response.choices[0].message.content
except Exception as e:
results[node_id] = f"[OpenAI Error: {{str(e)}}]"
elif provider == "VIDraft" and vidraft_token:
try:
headers = {{
"Authorization": f"Bearer {{vidraft_token}}",
"Content-Type": "application/json"
}}
messages = []
if system_prompt:
messages.append({{"role": "system", "content": system_prompt}})
messages.append({{"role": "user", "content": input_text}})
payload = {{
"model": "dep89a2fld32mcm",
"messages": messages,
"max_tokens": 16384,
"temperature": temperature,
"top_p": 0.8,
"stream": False
}}
response = requests.post(
"https://api.friendli.ai/dedicated/v1/chat/completions",
headers=headers,
json=payload,
timeout=30
)
if response.status_code == 200:
results[node_id] = response.json()["choices"][0]["message"]["content"]
else:
results[node_id] = f"[VIDraft Error: {{response.status_code}}]"
except Exception as e:
results[node_id] = f"[VIDraft Error: {{str(e)}}]"
else:
# Show which API key is missing
if provider == "OpenAI":
results[node_id] = "[OpenAI API key not found. Please set OPENAI_API_KEY in Space secrets]"
elif provider == "VIDraft":
results[node_id] = "[VIDraft API key not found. Please set FRIENDLI_TOKEN in Space secrets]"
else:
results[node_id] = f"[No API key found for {{provider}}. Using simulated response: {{input_text[:50]}}...]"
elif node_type in ["ChatOutput", "textOutput", "Output"]:
# Get connected result
for edge in edges:
if edge.get("target") == node_id:
source_id = edge.get("source")
if source_id in results:
results[node_id] = results[source_id]
break
# Return outputs
output_nodes = [n for n in nodes if n.get("type") in ["ChatOutput", "textOutput", "Output"]]
return [results.get(n["id"], "") for n in output_nodes]
# Build UI
with gr.Blocks(title="{app_name}", theme=gr.themes.Soft()) as demo:
gr.Markdown("# {app_name}")
gr.Markdown("{app_description}")
# API Status Check
vidraft_token = os.getenv("FRIENDLI_TOKEN")
openai_key = os.getenv("OPENAI_API_KEY")
with gr.Accordion("🔑 API Status", open=False):
if vidraft_token:
gr.Markdown("✅ **VIDraft API**: Connected (Gemma-3-r1984-27B)")
else:
gr.Markdown("❌ **VIDraft API**: Not configured")
if openai_key:
gr.Markdown("✅ **OpenAI API**: Connected (gpt-4.1-mini)")
else:
gr.Markdown("⚠️ **OpenAI API**: Not configured (optional)")
if not vidraft_token:
gr.Markdown("""
**⚠️ Important**: Please add FRIENDLI_TOKEN to Space secrets for the app to work properly.
Go to: Space settings → Repository secrets → Add secret
""")
elif not openai_key:
gr.Markdown("""
**💡 Tip**: The app will work with VIDraft alone. Add OPENAI_API_KEY if you need OpenAI features.
""")
else:
gr.Markdown("**✨ All APIs configured! Your app is fully functional.**")
# Extract nodes
nodes = WORKFLOW_DATA.get("nodes", [])
input_nodes = [n for n in nodes if n.get("type") in ["ChatInput", "textInput", "Input", "numberInput"]]
output_nodes = [n for n in nodes if n.get("type") in ["ChatOutput", "textOutput", "Output"]]
# Create inputs
inputs = []
if input_nodes:
gr.Markdown("### 📥 Inputs")
for node in input_nodes:
label = node.get("data", {{}}).get("label", node.get("id"))
template = node.get("data", {{}}).get("template", {{}})
default_value = template.get("input_value", {{}}).get("value", "")
if node.get("type") == "numberInput":
inp = gr.Number(label=label, value=float(default_value) if default_value else 0)
else:
inp = gr.Textbox(label=label, value=default_value, lines=2)
inputs.append(inp)
# Execute button
btn = gr.Button("🚀 Execute Workflow", variant="primary")
# Create outputs
outputs = []
if output_nodes:
gr.Markdown("### 📤 Outputs")
for node in output_nodes:
label = node.get("data", {{}}).get("label", node.get("id"))
out = gr.Textbox(label=label, interactive=False, lines=3)
outputs.append(out)
# Connect
btn.click(fn=execute_workflow, inputs=inputs, outputs=outputs)
gr.Markdown("---")
gr.Markdown("*Powered by MOUSE Workflow*")
if __name__ == "__main__":
demo.launch()
'''
return app_code
def generate_requirements_txt() -> str:
"""Generate requirements.txt for the standalone app"""
return """gradio==5.34.2
openai
requests
"""
def deploy_to_huggingface(workflow_data: dict, app_name: str, app_description: str,
hf_token: str, space_name: str, is_private: bool = False,
api_keys: dict = None) -> dict:
"""Deploy workflow to Hugging Face Space with API keys"""
if not HF_HUB_AVAILABLE:
return {"success": False, "error": "huggingface-hub library not installed"}
if api_keys is None:
api_keys = {}
try:
# Initialize HF API
api = HfApi(token=hf_token)
# Create repository
repo_id = api.create_repo(
repo_id=space_name,
repo_type="space",
space_sdk="gradio",
private=is_private,
exist_ok=True
)
# Detect which providers are used in the workflow
providers_used = set()
nodes = workflow_data.get("nodes", [])
for node in nodes:
if node.get("type") in ["llmNode", "OpenAIModel", "ChatModel"]:
template = node.get("data", {}).get("template", {})
provider = template.get("provider", {}).get("value", "")
if provider:
providers_used.add(provider)
# Generate files
app_code = generate_standalone_app(workflow_data, app_name, app_description)
requirements = generate_requirements_txt()
# README with API setup instructions
api_status = []
if "FRIENDLI_TOKEN" in api_keys and api_keys["FRIENDLI_TOKEN"]:
api_status.append("- **FRIENDLI_TOKEN**: ✅ Will be configured automatically")
else:
api_status.append("- **FRIENDLI_TOKEN**: ⚠️ Not provided (VIDraft won't work)")
if "OPENAI_API_KEY" in api_keys and api_keys["OPENAI_API_KEY"]:
api_status.append("- **OPENAI_API_KEY**: ✅ Will be configured automatically")
elif "OpenAI" in providers_used:
api_status.append("- **OPENAI_API_KEY**: ❌ Required but not provided")
readme = f"""---
title: {app_name}
emoji: 🐭
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 5.34.2
app_file: app.py
pinned: false
---
# {app_name}
{app_description}
## 🔑 API Configuration Status
{chr(10).join(api_status)}
## 📝 Providers Used in This Workflow
{', '.join(providers_used) if providers_used else 'No LLM providers detected'}
## 🚀 Default Configuration
This app is configured to use **VIDraft (Gemma-3-r1984-27B)** as the default LLM provider for optimal performance.
---
Generated by MOUSE Workflow
"""
# Upload files
api.upload_file(
path_or_fileobj=app_code.encode(),
path_in_repo="app.py",
repo_id=repo_id.repo_id,
repo_type="space"
)
api.upload_file(
path_or_fileobj=requirements.encode(),
path_in_repo="requirements.txt",
repo_id=repo_id.repo_id,
repo_type="space"
)
api.upload_file(
path_or_fileobj=readme.encode(),
path_in_repo="README.md",
repo_id=repo_id.repo_id,
repo_type="space"
)
# Add all provided API keys as secrets
added_secrets = []
failed_secrets = []
for key_name, key_value in api_keys.items():
if key_value: # Only add non-empty keys
try:
api.add_space_secret(
repo_id=repo_id.repo_id,
key=key_name,
value=key_value
)
added_secrets.append(key_name)
except Exception as e:
failed_secrets.append(f"{key_name}: {str(e)}")
print(f"Warning: Could not add {key_name} secret: {e}")
space_url = f"https://huggingface.co/spaces/{repo_id.repo_id}"
return {
"success": True,
"space_url": space_url,
"message": f"Successfully deployed to {space_url}",
"added_secrets": added_secrets,
"failed_secrets": failed_secrets,
"providers_used": list(providers_used)
}
except Exception as e:
return {
"success": False,
"error": str(e)
}
# UI 실행을 위한 실제 워크플로우 실행 함수
def execute_workflow_simple(workflow_data: dict, input_values: dict) -> dict:
"""워크플로우 실제 실행"""
import traceback
# API 키 확인
vidraft_token = os.getenv("FRIENDLI_TOKEN") # VIDraft/Friendli token
openai_key = os.getenv("OPENAI_API_KEY")
# anthropic_key = os.getenv("ANTHROPIC_API_KEY") # 주석 처리
# OpenAI 라이브러리 확인
try:
from openai import OpenAI
openai_available = True
except ImportError:
openai_available = False
print("OpenAI library not available")
# Anthropic 라이브러리 확인 - 주석 처리
# try:
# import anthropic
# anthropic_available = True
# except ImportError:
# anthropic_available = False
# print("Anthropic library not available")
anthropic_available = False
results = {}
nodes = workflow_data.get("nodes", [])
edges = workflow_data.get("edges", [])
# 노드를 순서대로 처리
for node in nodes:
node_id = node.get("id")
node_type = node.get("type", "")
node_data = node.get("data", {})
try:
if node_type in ["ChatInput", "textInput", "Input"]:
# UI에서 제공된 입력값 사용
if node_id in input_values:
results[node_id] = input_values[node_id]
else:
# 기본값 사용
template = node_data.get("template", {})
default_value = template.get("input_value", {}).get("value", "")
results[node_id] = default_value
elif node_type == "textNode":
# 텍스트 노드는 연결된 모든 입력을 결합
template = node_data.get("template", {})
base_text = template.get("text", {}).get("value", "")
# 연결된 입력들 수집
connected_inputs = []
for edge in edges:
if edge.get("target") == node_id:
source_id = edge.get("source")
if source_id in results:
connected_inputs.append(f"{source_id}: {results[source_id]}")
# 결합된 텍스트 생성
if connected_inputs:
combined_text = f"{base_text}\n\nInputs:\n" + "\n".join(connected_inputs)
results[node_id] = combined_text
else:
results[node_id] = base_text
elif node_type in ["llmNode", "OpenAIModel", "ChatModel"]:
# LLM 노드 처리
template = node_data.get("template", {})
# 프로바이더 정보 추출 - VIDraft 또는 OpenAI만 허용
provider_info = template.get("provider", {})
provider = provider_info.get("value", "VIDraft") if isinstance(provider_info, dict) else "VIDraft" # 기본값 VIDraft
# provider가 VIDraft 또는 OpenAI가 아닌 경우 VIDraft로 기본 설정
if provider not in ["VIDraft", "OpenAI"]:
provider = "VIDraft"
# 모델 정보 추출
if provider == "OpenAI":
# OpenAI는 gpt-4.1-mini로 고정
model = "gpt-4.1-mini"
elif provider == "VIDraft":
# VIDraft는 Gemma-3-r1984-27B로 고정
model = "Gemma-3-r1984-27B"
else:
model = "Gemma-3-r1984-27B" # 기본값 VIDraft 모델
# 온도 정보 추출
temp_info = template.get("temperature", {})
temperature = temp_info.get("value", 0.7) if isinstance(temp_info, dict) else 0.7
# 시스템 프롬프트 추출
prompt_info = template.get("system_prompt", {})
system_prompt = prompt_info.get("value", "") if isinstance(prompt_info, dict) else ""
# 입력 텍스트 찾기
input_text = ""
for edge in edges:
if edge.get("target") == node_id:
source_id = edge.get("source")
if source_id in results:
input_text = results[source_id]
break
# 실제 API 호출
if provider == "OpenAI" and openai_key and openai_available:
try:
client = OpenAI(api_key=openai_key)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": input_text})
response = client.chat.completions.create(
model="gpt-4.1-mini", # 고정된 모델명
messages=messages,
temperature=temperature,
max_tokens=1000
)
results[node_id] = response.choices[0].message.content
except Exception as e:
results[node_id] = f"[OpenAI Error: {str(e)}]"
# Anthropic 관련 코드 주석 처리
# elif provider == "Anthropic" and anthropic_key and anthropic_available:
# try:
# client = anthropic.Anthropic(api_key=anthropic_key)
#
# message = client.messages.create(
# model="claude-3-haiku-20240307",
# max_tokens=1000,
# temperature=temperature,
# system=system_prompt if system_prompt else None,
# messages=[{"role": "user", "content": input_text}]
# )
#
# results[node_id] = message.content[0].text
#
# except Exception as e:
# results[node_id] = f"[Anthropic Error: {str(e)}]"
elif provider == "VIDraft" and vidraft_token:
try:
import requests
headers = {
"Authorization": f"Bearer {vidraft_token}",
"Content-Type": "application/json"
}
# 메시지 구성
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": input_text})
payload = {
"model": "dep89a2fld32mcm", # VIDraft 모델 ID
"messages": messages,
"max_tokens": 16384,
"temperature": temperature,
"top_p": 0.8,
"stream": False # 동기 실행을 위해 False로 설정
}
# VIDraft API endpoint
response = requests.post(
"https://api.friendli.ai/dedicated/v1/chat/completions",
headers=headers,
json=payload,
timeout=30
)
if response.status_code == 200:
response_json = response.json()
results[node_id] = response_json["choices"][0]["message"]["content"]
else:
results[node_id] = f"[VIDraft API Error: {response.status_code} - {response.text}]"
except Exception as e:
results[node_id] = f"[VIDraft Error: {str(e)}]"
else:
# API 키가 없는 경우 시뮬레이션
results[node_id] = f"[Simulated {provider} Response to: {input_text[:50]}...]"
elif node_type in ["ChatOutput", "textOutput", "Output"]:
# 출력 노드는 연결된 노드의 결과를 가져옴
for edge in edges:
if edge.get("target") == node_id:
source_id = edge.get("source")
if source_id in results:
results[node_id] = results[source_id]
break
except Exception as e:
results[node_id] = f"[Node Error: {str(e)}]"
print(f"Error processing node {node_id}: {traceback.format_exc()}")
return results
# -------------------------------------------------------------------
# 🎨 CSS
# -------------------------------------------------------------------
CSS = """
.main-container{max-width:1600px;margin:0 auto;}
.workflow-section{margin-bottom:2rem;min-height:500px;}
.button-row{display:flex;gap:1rem;justify-content:center;margin:1rem 0;}
.status-box{
padding:10px;border-radius:5px;margin-top:10px;
background:#f0f9ff;border:1px solid #3b82f6;color:#1e40af;
}
.component-description{
padding:24px;background:linear-gradient(135deg,#f8fafc 0%,#e2e8f0 100%);
border-left:4px solid #3b82f6;border-radius:12px;
box-shadow:0 2px 8px rgba(0,0,0,.05);margin:16px 0;
}
.workflow-container{position:relative;}
.ui-execution-section{
background:linear-gradient(135deg,#f0fdf4 0%,#dcfce7 100%);
padding:24px;border-radius:12px;margin:24px 0;
border:1px solid #86efac;
}
.powered-by{
text-align:center;color:#64748b;font-size:14px;
margin-top:8px;font-style:italic;
}
.sample-buttons{
display:grid;grid-template-columns:1fr 1fr;gap:0.5rem;
margin-top:0.5rem;
}
.deploy-section{
background:linear-gradient(135deg,#fef3c7 0%,#fde68a 100%);
padding:24px;border-radius:12px;margin:24px 0;
border:1px solid #fbbf24;
}
.save-indicator{
text-align:right;
font-size:14px;
color:#16a34a;
padding:8px 16px;
background:#f0fdf4;
border-radius:20px;
display:inline-block;
margin-left:auto;
}
.workflow-info{
font-size:14px;
color:#475569;
background:#f8fafc;
padding:8px 16px;
border-radius:8px;
display:inline-block;
margin-bottom:16px;
}
"""
# -------------------------------------------------------------------
# 🖥️ Gradio 앱
# -------------------------------------------------------------------
with gr.Blocks(title="🐭 MOUSE Workflow", theme=gr.themes.Soft(), css=CSS) as demo:
with gr.Column(elem_classes=["main-container"]):
gr.Markdown("# 🐭 MOUSE Workflow")
gr.Markdown("**Visual Workflow Builder with Interactive UI Execution**")
gr.HTML('<p class="powered-by">@Powered by VIDraft & Huggingface gradio</p>')
html_content = """<div class="component-description">
<p style="font-size:16px;margin:0;">Build sophisticated workflows visually • Import/Export JSON • Generate interactive UI for end-users • Default LLM: VIDraft (Gemma-3-r1984-27B)</p>
<p style="font-size:14px;margin-top:8px;color:#64748b;">💡 Tip: Your workflow is automatically saved as you make changes. The JSON preview updates in real-time!</p>
</div>"""
gr.HTML(html_content)
# API Status Display
with gr.Accordion("🔌 API Status", open=False):
gr.Markdown(f"""
**Available APIs:**
- FRIENDLI_TOKEN (VIDraft): {'✅ Connected' if os.getenv("FRIENDLI_TOKEN") else '❌ Not found'}
- OPENAI_API_KEY: {'✅ Connected' if os.getenv("OPENAI_API_KEY") else '❌ Not found'}
**Libraries:**
- OpenAI: {'✅ Installed' if OPENAI_AVAILABLE else '❌ Not installed'}
- Requests: {'✅ Installed' if REQUESTS_AVAILABLE else '❌ Not installed'}
- Hugging Face Hub: {'✅ Installed' if HF_HUB_AVAILABLE else '❌ Not installed (needed for deployment)'}
**Available Models:**
- OpenAI: gpt-4.1-mini (fixed)
- VIDraft: Gemma-3-r1984-27B (model ID: dep89a2fld32mcm)
**Sample Workflows:**
- Basic Q&A: Simple question-answer flow (VIDraft)
- VIDraft: Korean language example with Gemma model
- Multi-Input: Combine multiple inputs for personalized output (VIDraft)
- Chain: Sequential processing with multiple outputs (VIDraft + OpenAI)
**Note**: All examples prioritize VIDraft for optimal performance. Friendli API token will be automatically configured during deployment.
""")
# State for storing workflow data
loaded_data = gr.State(None)
trigger_update = gr.State(False)
save_status = gr.State("Ready")
# ─── Dynamic Workflow Container ───
with gr.Column(elem_classes=["workflow-container"]):
# Auto-save status indicator
with gr.Row():
gr.Markdown("### 🎨 Visual Workflow Designer")
save_indicator = gr.Markdown("💾 Auto-save: Ready", elem_classes=["save-indicator"])
@gr.render(inputs=[loaded_data, trigger_update])
def render_workflow(data, trigger):
"""동적으로 WorkflowBuilder 렌더링"""
workflow_value = data if data else {"nodes": [], "edges": []}
wb = WorkflowBuilder(
label="",
info="Drag nodes → Connect edges → Edit properties → Changes auto-save!",
value=workflow_value,
elem_id="main_workflow"
)
# WorkflowBuilder 변경사항을 자동으로 loaded_data에 저장
def update_workflow_data(workflow_data):
"""워크플로우 데이터 업데이트 및 상태 표시"""
import time
# 즉시 저장 상태 표시
return workflow_data, f"💾 Auto-save: Saved ✓ ({time.strftime('%H:%M:%S')})"
wb.change(
fn=update_workflow_data,
inputs=wb,
outputs=[loaded_data, save_indicator]
)
return wb
# ─── Import Section ───
with gr.Accordion("📥 Import Workflow", open=True):
gr.Markdown("*Load an existing workflow from JSON or start with a sample template*")
with gr.Row():
with gr.Column(scale=2):
import_json_text = gr.Code(
language="json",
label="Paste JSON here",
lines=8,
value='{\n "nodes": [],\n "edges": []\n}'
)
with gr.Column(scale=1):
file_upload = gr.File(
label="Or upload JSON file",
file_types=[".json"],
type="filepath"
)
btn_load = gr.Button("📥 Load Workflow", variant="primary", size="lg")
# Sample buttons
gr.Markdown("**Sample Workflows:**")
with gr.Row():
btn_sample_basic = gr.Button("🎯 Basic Q&A", variant="secondary", scale=1)
btn_sample_vidraft = gr.Button("🤖 VIDraft", variant="secondary", scale=1)
with gr.Row():
btn_sample_multi = gr.Button("📝 Multi-Input", variant="secondary", scale=1)
btn_sample_chain = gr.Button("🔗 Chain", variant="secondary", scale=1)
# Status
status_text = gr.Textbox(
label="Status",
value="Ready",
elem_classes=["status-box"],
interactive=False
)
# ─── Export Section ───
gr.Markdown("## 💾 Export / Live Preview")
gr.Markdown("*Your workflow is automatically saved. The JSON below shows your current workflow in real-time.*")
# Workflow info display
workflow_info = gr.Markdown("📊 Empty workflow", elem_classes=["workflow-info"])
with gr.Row():
with gr.Column(scale=3):
export_preview = gr.Code(
language="json",
label="Current Workflow JSON (Live Preview)",
lines=8,
interactive=False
)
gr.Markdown("*💡 This JSON updates automatically as you modify the workflow above*")
with gr.Column(scale=1):
btn_preview = gr.Button("🔄 Force Refresh", size="lg", variant="secondary")
btn_download = gr.DownloadButton(
"💾 Download JSON",
size="lg",
variant="primary",
visible=True
)
# ─── Deploy Section ───
with gr.Accordion("🚀 Deploy to Hugging Face Space", open=False, elem_classes=["deploy-section"]):
gr.Markdown("""
Deploy your **current workflow** as an independent Hugging Face Space app.
The workflow shown in the JSON preview above will be deployed exactly as is.
""")
gr.Markdown("*⚠️ Make sure to save/finalize your workflow design before deploying!*")
with gr.Row():
with gr.Column(scale=2):
deploy_name = gr.Textbox(
label="App Name",
placeholder="My Awesome Workflow App",
value="My Workflow App"
)
deploy_description = gr.Textbox(
label="App Description",
placeholder="Describe what your workflow does...",
lines=3,
value="A workflow application created with MOUSE Workflow builder."
)
deploy_space_name = gr.Textbox(
label="Space Name (your-username/space-name)",
placeholder="username/my-workflow-app",
info="This will be the URL of your Space"
)
with gr.Column(scale=1):
deploy_token = gr.Textbox(
label="Hugging Face Token",
type="password",
placeholder="hf_...",
info="Get your token from huggingface.co/settings/tokens"
)
# API Keys 설정 섹션
gr.Markdown("### 🔑 API Keys Configuration")
# FRIENDLI_TOKEN 설정
friendli_token_input = gr.Textbox(
label="FRIENDLI_TOKEN (VIDraft/Gemma)",
type="password",
placeholder="flp_...",
value=os.getenv("FRIENDLI_TOKEN", ""),
info="Required for VIDraft. Will be added as secret."
)
# OpenAI API Key 설정
openai_token_input = gr.Textbox(
label="OPENAI_API_KEY (Optional)",
type="password",
placeholder="sk-...",
value=os.getenv("OPENAI_API_KEY", ""),
info="Optional. Leave empty if not using OpenAI."
)
deploy_private = gr.Checkbox(
label="Make Space Private",
value=False
)
btn_deploy = gr.Button("🚀 Deploy to HF Space", variant="primary", size="lg")
# Deploy status
deploy_status = gr.Markdown("")
# Preview generated code
with gr.Accordion("📄 Preview Generated Code", open=False):
generated_code_preview = gr.Code(
language="python",
label="app.py (This will be deployed)",
lines=20
)
# ─── UI Execution Section ───
with gr.Column(elem_classes=["ui-execution-section"]):
gr.Markdown("## 🚀 UI Execution")
gr.Markdown("Test your workflow instantly! Click below to generate and run the UI from your current workflow design.")
btn_execute_ui = gr.Button("▶️ Generate & Run UI from Current Workflow", variant="primary", size="lg")
# UI execution state
ui_workflow_data = gr.State(None)
# Dynamic UI container
@gr.render(inputs=[ui_workflow_data])
def render_execution_ui(workflow_data):
if not workflow_data or not workflow_data.get("nodes"):
gr.Markdown("*Load a workflow first, then click 'Generate & Run UI'*")
return
gr.Markdown("### 📋 Generated UI")
# Extract input and output nodes
input_nodes = []
output_nodes = []
for node in workflow_data.get("nodes", []):
node_type = node.get("type", "")
if node_type in ["ChatInput", "textInput", "Input", "numberInput"]:
input_nodes.append(node)
elif node_type in ["ChatOutput", "textOutput", "Output"]:
output_nodes.append(node)
elif node_type == "textNode":
# textNode는 중간 처리 노드로, UI에는 표시하지 않음
pass
# Create input components
input_components = {}
if input_nodes:
gr.Markdown("#### 📥 Inputs")
for node in input_nodes:
node_id = node.get("id")
label = node.get("data", {}).get("label", node_id)
node_type = node.get("type")
# Get default value
template = node.get("data", {}).get("template", {})
default_value = template.get("input_value", {}).get("value", "")
if node_type == "numberInput":
input_components[node_id] = gr.Number(
label=label,
value=float(default_value) if default_value else 0
)
else:
input_components[node_id] = gr.Textbox(
label=label,
value=default_value,
lines=2,
placeholder="Enter your input..."
)
# Execute button
execute_btn = gr.Button("🎯 Execute", variant="primary")
# Create output components
output_components = {}
if output_nodes:
gr.Markdown("#### 📤 Outputs")
for node in output_nodes:
node_id = node.get("id")
label = node.get("data", {}).get("label", node_id)
output_components[node_id] = gr.Textbox(
label=label,
interactive=False,
lines=3
)
# Execution log
gr.Markdown("#### 📊 Execution Log")
log_output = gr.Textbox(
label="Log",
interactive=False,
lines=5
)
# Define execution handler
def execute_ui_workflow(*input_values):
# Create input dictionary
inputs_dict = {}
input_keys = list(input_components.keys())
for i, key in enumerate(input_keys):
if i < len(input_values):
inputs_dict[key] = input_values[i]
# Check API status
log = "=== Workflow Execution Started ===\n"
log += f"Inputs provided: {len(inputs_dict)}\n"
# API 상태 확인
vidraft_token = os.getenv("FRIENDLI_TOKEN")
openai_key = os.getenv("OPENAI_API_KEY")
log += "\nAPI Status:\n"
log += f"- FRIENDLI_TOKEN (VIDraft): {'✅ Found' if vidraft_token else '❌ Not found'}\n"
log += f"- OPENAI_API_KEY: {'✅ Found' if openai_key else '❌ Not found'}\n"
if not vidraft_token and not openai_key:
log += "\n⚠️ No API keys found. Results will be simulated.\n"
log += "To get real AI responses, set API keys in environment variables.\n"
log += "Minimum requirement: FRIENDLI_TOKEN for VIDraft\n"
elif vidraft_token and not openai_key:
log += "\n✅ VIDraft API connected - Basic functionality available\n"
log += "💡 Add OPENAI_API_KEY for full functionality\n"
log += "\n--- Processing Nodes ---\n"
try:
results = execute_workflow_simple(workflow_data, inputs_dict)
# Prepare outputs
output_values = []
for node_id in output_components.keys():
value = results.get(node_id, "No output")
output_values.append(value)
# Log 길이 제한
display_value = value[:100] + "..." if len(str(value)) > 100 else value
log += f"\nOutput [{node_id}]: {display_value}\n"
log += "\n=== Execution Completed Successfully! ===\n"
output_values.append(log)
return output_values
except Exception as e:
error_msg = f"❌ Error: {str(e)}"
log += f"\n{error_msg}\n"
log += "=== Execution Failed ===\n"
return [error_msg] * len(output_components) + [log]
# Connect execution
all_inputs = list(input_components.values())
all_outputs = list(output_components.values()) + [log_output]
execute_btn.click(
fn=execute_ui_workflow,
inputs=all_inputs,
outputs=all_outputs
)
# ─── Event Handlers ───
# Load workflow (from text or file)
def load_workflow(json_text, file_obj):
data, status = load_json_from_text_or_file(json_text, file_obj)
if data:
# 로드 성공시 자동으로 미리보기 업데이트
return data, status, json_text if not file_obj else export_pretty(data), "💾 Auto-save: Loaded ✓"
else:
return None, status, gr.update(), gr.update()
btn_load.click(
fn=load_workflow,
inputs=[import_json_text, file_upload],
outputs=[loaded_data, status_text, import_json_text, save_indicator]
).then(
fn=lambda current_trigger: not current_trigger,
inputs=trigger_update,
outputs=trigger_update
)
# Auto-load when file is uploaded
file_upload.change(
fn=load_workflow,
inputs=[import_json_text, file_upload],
outputs=[loaded_data, status_text, import_json_text, save_indicator]
).then(
fn=lambda current_trigger: not current_trigger,
inputs=trigger_update,
outputs=trigger_update
)
# Load samples
btn_sample_basic.click(
fn=lambda: (create_sample_workflow("basic"), "✅ Basic Q&A sample loaded", export_pretty(create_sample_workflow("basic")), "💾 Auto-save: Sample loaded ✓"),
outputs=[loaded_data, status_text, import_json_text, save_indicator]
).then(
fn=lambda current_trigger: not current_trigger,
inputs=trigger_update,
outputs=trigger_update
)
btn_sample_vidraft.click(
fn=lambda: (create_sample_workflow("vidraft"), "✅ VIDraft sample loaded", export_pretty(create_sample_workflow("vidraft")), "💾 Auto-save: Sample loaded ✓"),
outputs=[loaded_data, status_text, import_json_text, save_indicator]
).then(
fn=lambda current_trigger: not current_trigger,
inputs=trigger_update,
outputs=trigger_update
)
btn_sample_multi.click(
fn=lambda: (create_sample_workflow("multi_input"), "✅ Multi-input sample loaded", export_pretty(create_sample_workflow("multi_input")), "💾 Auto-save: Sample loaded ✓"),
outputs=[loaded_data, status_text, import_json_text, save_indicator]
).then(
fn=lambda current_trigger: not current_trigger,
inputs=trigger_update,
outputs=trigger_update
)
btn_sample_chain.click(
fn=lambda: (create_sample_workflow("chain"), "✅ Chain processing sample loaded", export_pretty(create_sample_workflow("chain")), "💾 Auto-save: Sample loaded ✓"),
outputs=[loaded_data, status_text, import_json_text, save_indicator]
).then(
fn=lambda current_trigger: not current_trigger,
inputs=trigger_update,
outputs=trigger_update
)
# Preview current workflow - 강제 새로고침
def force_refresh_preview(current_data):
"""현재 워크플로우 데이터를 강제로 새로고침"""
if current_data:
node_count = len(current_data.get("nodes", []))
edge_count = len(current_data.get("edges", []))
info = f"📊 Workflow contains {node_count} nodes and {edge_count} edges"
return export_pretty(current_data), "💾 Auto-save: Refreshed ✓", info
return "No workflow data available", "💾 Auto-save: No data", "📊 Empty workflow"
btn_preview.click(
fn=force_refresh_preview,
inputs=loaded_data,
outputs=[export_preview, save_indicator, workflow_info]
)
# Download workflow는 이미 loaded_data.change에서 처리됨
# Auto-update export preview when workflow changes
def update_preview_and_download(data):
"""워크플로우 변경시 미리보기와 다운로드 업데이트"""
if data:
preview = export_pretty(data)
download_file = export_file(data)
node_count = len(data.get("nodes", []))
edge_count = len(data.get("edges", []))
status = f"📊 Workflow contains {node_count} nodes and {edge_count} edges"
return preview, download_file, status
return "No workflow data", None, "📊 Empty workflow"
loaded_data.change(
fn=update_preview_and_download,
inputs=loaded_data,
outputs=[export_preview, btn_download, workflow_info]
)
# Generate UI execution - 현재 워크플로우 사용
def prepare_ui_execution(current_data):
"""현재 워크플로우를 UI 실행용으로 준비"""
if not current_data or not current_data.get("nodes"):
gr.Warning("Please create a workflow first!")
return None
return current_data
btn_execute_ui.click(
fn=prepare_ui_execution,
inputs=loaded_data,
outputs=ui_workflow_data
)
# ─── Deploy Event Handlers ───
# Preview generated code
def preview_generated_code(workflow_data, app_name, app_description):
if not workflow_data:
return "# No workflow loaded\n# Create or load a workflow first"
if not workflow_data.get("nodes"):
return "# Empty workflow\n# Add some nodes to see the generated code"
try:
code = generate_standalone_app(workflow_data, app_name, app_description)
return code
except Exception as e:
return f"# Error generating code\n# {str(e)}"
# Update preview when inputs change
deploy_name.change(
fn=preview_generated_code,
inputs=[loaded_data, deploy_name, deploy_description],
outputs=generated_code_preview
)
deploy_description.change(
fn=preview_generated_code,
inputs=[loaded_data, deploy_name, deploy_description],
outputs=generated_code_preview
)
# Update preview when workflow changes too
loaded_data.change(
fn=preview_generated_code,
inputs=[loaded_data, deploy_name, deploy_description],
outputs=generated_code_preview
)
# Deploy handler
def handle_deploy(workflow_data, app_name, app_description, hf_token, space_name,
friendli_token, openai_token, is_private):
if not workflow_data:
return "❌ No workflow loaded. Please create or load a workflow first."
if not workflow_data.get("nodes"):
return "❌ Empty workflow. Please add some nodes to your workflow."
if not hf_token:
return "❌ Hugging Face token is required. Get yours at huggingface.co/settings/tokens"
if not space_name:
return "❌ Space name is required. Format: username/space-name"
# Validate space name format
if "/" not in space_name:
return "❌ Invalid space name format. Use: username/space-name"
# Check if huggingface-hub is available
if not HF_HUB_AVAILABLE:
return "❌ huggingface-hub library not installed. Install with: pip install huggingface-hub"
# Show deploying status
yield "🔄 Deploying to Hugging Face Space..."
# Prepare API keys
api_keys = {}
# Always include FRIENDLI_TOKEN (even if empty)
if not friendli_token:
friendli_token = os.getenv("FRIENDLI_TOKEN", "")
if friendli_token:
api_keys["FRIENDLI_TOKEN"] = friendli_token
# Include OpenAI key if provided
if not openai_token:
openai_token = os.getenv("OPENAI_API_KEY", "")
if openai_token:
api_keys["OPENAI_API_KEY"] = openai_token
# Deploy
result = deploy_to_huggingface(
workflow_data=workflow_data,
app_name=app_name,
app_description=app_description,
hf_token=hf_token,
space_name=space_name,
is_private=is_private,
api_keys=api_keys
)
if result["success"]:
# Build secrets status message
secrets_msg = "\n\n**🔑 API Keys Status:**"
if result.get("added_secrets"):
for secret in result["added_secrets"]:
secrets_msg += f"\n- {secret}: ✅ Successfully added"
if result.get("failed_secrets"):
for failure in result["failed_secrets"]:
secrets_msg += f"\n- {failure}: ❌ Failed to add"
# Check for missing required keys
providers = result.get("providers_used", [])
if "VIDraft" in providers and "FRIENDLI_TOKEN" not in result.get("added_secrets", []):
secrets_msg += "\n- FRIENDLI_TOKEN: ⚠️ Required for VIDraft but not provided"
if "OpenAI" in providers and "OPENAI_API_KEY" not in result.get("added_secrets", []):
secrets_msg += "\n- OPENAI_API_KEY: ⚠️ Required for OpenAI but not provided"
yield f"""✅ **Deployment Successful!**
🎉 Your workflow has been deployed to:
[{result['space_url']}]({result['space_url']})
⏱️ The Space will be ready in a few minutes. Building usually takes 2-5 minutes.
{secrets_msg}
📝 **Providers Detected in Workflow:**
{', '.join(result.get('providers_used', [])) if result.get('providers_used') else 'No LLM providers detected'}
🚀 **Default Configuration:**
The app is configured to prioritize VIDraft (Gemma-3-r1984-27B) for optimal performance.
📚 **Space Management:**
- To update secrets: Go to Space settings → Repository secrets
- To restart Space: Go to Space settings → Factory reboot
- To make changes: Edit files directly in the Space repository
"""
else:
yield f"❌ **Deployment Failed**\n\nError: {result['error']}"
btn_deploy.click(
fn=handle_deploy,
inputs=[loaded_data, deploy_name, deploy_description, deploy_token, deploy_space_name,
friendli_token_input, openai_token_input, deploy_private],
outputs=deploy_status
)
# -------------------------------------------------------------------
# 🚀 실행
# -------------------------------------------------------------------
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", show_error=True) |