Spaces:
Running
Running
File size: 38,629 Bytes
794a971 8ab24a9 794a971 8ab24a9 8a7b064 8ab24a9 794a971 ce12e70 794a971 ce12e70 794a971 ce12e70 794a971 ce12e70 794a971 ce12e70 794a971 ce12e70 794a971 8ab24a9 794a971 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 794a971 8ab24a9 794a971 8ab24a9 794a971 8ab24a9 794a971 8ab24a9 794a971 ce12e70 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 8a7b064 794a971 8ab24a9 794a971 ce12e70 794a971 8a7b064 794a971 8ab24a9 8a7b064 8ab24a9 8a7b064 ce12e70 8ab24a9 794a971 ce12e70 794a971 ce12e70 794a971 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 8a7b064 8ab24a9 794a971 8ab24a9 794a971 8ab24a9 794a971 8ab24a9 794a971 ce12e70 794a971 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 |
"""
MOUSE Workflow - Visual Workflow Builder with UI Execution
@Powered by VIDraft
โ Visual workflow designer with drag-and-drop
โ Import/Export JSON with copy-paste support
โ Auto-generate UI from workflow for end-user execution
"""
import os, json, typing, tempfile, traceback
import gradio as gr
from gradio_workflowbuilder import WorkflowBuilder
# Optional imports for LLM APIs
try:
from openai import OpenAI
OPENAI_AVAILABLE = True
except ImportError:
OPENAI_AVAILABLE = False
print("OpenAI library not available. Install with: pip install openai")
# Anthropic ๊ด๋ จ ์ฝ๋ ์ฃผ์ ์ฒ๋ฆฌ
# try:
# import anthropic
# ANTHROPIC_AVAILABLE = True
# except ImportError:
# ANTHROPIC_AVAILABLE = False
# print("Anthropic library not available. Install with: pip install anthropic")
ANTHROPIC_AVAILABLE = False
try:
import requests
REQUESTS_AVAILABLE = True
except ImportError:
REQUESTS_AVAILABLE = False
print("Requests library not available. Install with: pip install requests")
# -------------------------------------------------------------------
# ๐ ๏ธ ํฌํผ ํจ์๋ค
# -------------------------------------------------------------------
def export_pretty(data: typing.Dict[str, typing.Any]) -> str:
return json.dumps(data, indent=2, ensure_ascii=False) if data else "No workflow to export"
def export_file(data: typing.Dict[str, typing.Any]) -> typing.Optional[str]:
"""์ํฌํ๋ก์ฐ๋ฅผ JSON ํ์ผ๋ก ๋ด๋ณด๋ด๊ธฐ"""
if not data:
return None
fd, path = tempfile.mkstemp(suffix=".json", prefix="workflow_")
try:
with os.fdopen(fd, "w", encoding="utf-8") as f:
json.dump(data, f, ensure_ascii=False, indent=2)
return path
except Exception as e:
print(f"Error exporting file: {e}")
return None
def load_json_from_text_or_file(json_text: str, file_obj) -> typing.Tuple[typing.Dict[str, typing.Any], str]:
"""ํ
์คํธ ๋๋ ํ์ผ์์ JSON ๋ก๋"""
# ํ์ผ์ด ์์ผ๋ฉด ํ์ผ ์ฐ์
if file_obj is not None:
try:
with open(file_obj.name, "r", encoding="utf-8") as f:
json_text = f.read()
except Exception as e:
return None, f"โ Error reading file: {str(e)}"
# JSON ํ
์คํธ๊ฐ ์๊ฑฐ๋ ๋น์ด์์ผ๋ฉด
if not json_text or json_text.strip() == "":
return None, "No JSON data provided"
try:
# JSON ํ์ฑ
data = json.loads(json_text.strip())
# ๋ฐ์ดํฐ ๊ฒ์ฆ
if not isinstance(data, dict):
return None, "Invalid format: not a dictionary"
# ํ์ ํ๋ ํ์ธ
if 'nodes' not in data:
data['nodes'] = []
if 'edges' not in data:
data['edges'] = []
nodes_count = len(data.get('nodes', []))
edges_count = len(data.get('edges', []))
return data, f"โ
Loaded: {nodes_count} nodes, {edges_count} edges"
except json.JSONDecodeError as e:
return None, f"โ JSON parsing error: {str(e)}"
except Exception as e:
return None, f"โ Error: {str(e)}"
def create_sample_workflow(example_type="basic"):
"""์ํ ์ํฌํ๋ก์ฐ ์์ฑ"""
if example_type == "basic":
# ๊ธฐ๋ณธ ์์ : ๊ฐ๋จํ Q&A
return {
"nodes": [
{
"id": "input_1",
"type": "ChatInput",
"position": {"x": 100, "y": 200},
"data": {
"label": "User Question",
"template": {
"input_value": {"value": "What is the capital of Korea?"}
}
}
},
{
"id": "llm_1",
"type": "llmNode",
"position": {"x": 400, "y": 200},
"data": {
"label": "AI Processing",
"template": {
"provider": {"value": "OpenAI"},
"model": {"value": "gpt-4.1-mini"},
"temperature": {"value": 0.7},
"system_prompt": {"value": "You are a helpful assistant."}
}
}
},
{
"id": "output_1",
"type": "ChatOutput",
"position": {"x": 700, "y": 200},
"data": {"label": "Answer"}
}
],
"edges": [
{"id": "e1", "source": "input_1", "target": "llm_1"},
{"id": "e2", "source": "llm_1", "target": "output_1"}
]
}
elif example_type == "vidraft":
# VIDraft ์์
return {
"nodes": [
{
"id": "input_1",
"type": "ChatInput",
"position": {"x": 100, "y": 200},
"data": {
"label": "User Input",
"template": {
"input_value": {"value": "AI์ ๋จธ์ ๋ฌ๋์ ์ฐจ์ด์ ์ ์ค๋ช
ํด์ฃผ์ธ์."}
}
}
},
{
"id": "llm_1",
"type": "llmNode",
"position": {"x": 400, "y": 200},
"data": {
"label": "VIDraft AI (Gemma)",
"template": {
"provider": {"value": "VIDraft"},
"model": {"value": "Gemma-3-r1984-27B"},
"temperature": {"value": 0.8},
"system_prompt": {"value": "๋น์ ์ ์ ๋ฌธ์ ์ด๊ณ ์น์ ํ AI ๊ต์ก์์
๋๋ค. ๋ณต์กํ ๊ฐ๋
์ ์ฝ๊ฒ ์ค๋ช
ํด์ฃผ์ธ์."}
}
}
},
{
"id": "output_1",
"type": "ChatOutput",
"position": {"x": 700, "y": 200},
"data": {"label": "AI Explanation"}
}
],
"edges": [
{"id": "e1", "source": "input_1", "target": "llm_1"},
{"id": "e2", "source": "llm_1", "target": "output_1"}
]
}
elif example_type == "multi_input":
# ๋ค์ค ์
๋ ฅ ์์
return {
"nodes": [
{
"id": "name_input",
"type": "textInput",
"position": {"x": 100, "y": 100},
"data": {
"label": "Your Name",
"template": {
"input_value": {"value": "John"}
}
}
},
{
"id": "topic_input",
"type": "textInput",
"position": {"x": 100, "y": 250},
"data": {
"label": "Topic",
"template": {
"input_value": {"value": "Python programming"}
}
}
},
{
"id": "level_input",
"type": "textInput",
"position": {"x": 100, "y": 400},
"data": {
"label": "Skill Level",
"template": {
"input_value": {"value": "beginner"}
}
}
},
{
"id": "combiner",
"type": "textNode",
"position": {"x": 350, "y": 250},
"data": {
"label": "Combine Inputs",
"template": {
"text": {"value": "Create a personalized learning plan"}
}
}
},
{
"id": "llm_1",
"type": "llmNode",
"position": {"x": 600, "y": 250},
"data": {
"label": "Generate Learning Plan",
"template": {
"provider": {"value": "OpenAI"},
"model": {"value": "gpt-4.1-mini"},
"temperature": {"value": 0.7},
"system_prompt": {"value": "You are an expert educational consultant. Create personalized learning plans based on the user's name, topic of interest, and skill level."}
}
}
},
{
"id": "output_1",
"type": "ChatOutput",
"position": {"x": 900, "y": 250},
"data": {"label": "Your Learning Plan"}
}
],
"edges": [
{"id": "e1", "source": "name_input", "target": "combiner"},
{"id": "e2", "source": "topic_input", "target": "combiner"},
{"id": "e3", "source": "level_input", "target": "combiner"},
{"id": "e4", "source": "combiner", "target": "llm_1"},
{"id": "e5", "source": "llm_1", "target": "output_1"}
]
}
elif example_type == "chain":
# ์ฒด์ธ ์ฒ๋ฆฌ ์์
return {
"nodes": [
{
"id": "input_1",
"type": "ChatInput",
"position": {"x": 50, "y": 200},
"data": {
"label": "Original Text",
"template": {
"input_value": {"value": "The quick brown fox jumps over the lazy dog."}
}
}
},
{
"id": "translator",
"type": "llmNode",
"position": {"x": 300, "y": 200},
"data": {
"label": "Translate to Korean",
"template": {
"provider": {"value": "VIDraft"},
"model": {"value": "Gemma-3-r1984-27B"},
"temperature": {"value": 0.3},
"system_prompt": {"value": "You are a professional translator. Translate the given English text to Korean accurately."}
}
}
},
{
"id": "analyzer",
"type": "llmNode",
"position": {"x": 600, "y": 200},
"data": {
"label": "Analyze Translation",
"template": {
"provider": {"value": "OpenAI"},
"model": {"value": "gpt-4.1-mini"},
"temperature": {"value": 0.5},
"system_prompt": {"value": "You are a linguistic expert. Analyze the Korean translation and explain its nuances and cultural context."}
}
}
},
{
"id": "output_translation",
"type": "ChatOutput",
"position": {"x": 450, "y": 350},
"data": {"label": "Korean Translation"}
},
{
"id": "output_analysis",
"type": "ChatOutput",
"position": {"x": 900, "y": 200},
"data": {"label": "Translation Analysis"}
}
],
"edges": [
{"id": "e1", "source": "input_1", "target": "translator"},
{"id": "e2", "source": "translator", "target": "analyzer"},
{"id": "e3", "source": "translator", "target": "output_translation"},
{"id": "e4", "source": "analyzer", "target": "output_analysis"}
]
}
# ๊ธฐ๋ณธ๊ฐ์ basic
return create_sample_workflow("basic")
# UI ์คํ์ ์ํ ์ค์ ์ํฌํ๋ก์ฐ ์คํ ํจ์
def execute_workflow_simple(workflow_data: dict, input_values: dict) -> dict:
"""์ํฌํ๋ก์ฐ ์ค์ ์คํ"""
import traceback
# API ํค ํ์ธ
vidraft_token = os.getenv("FRIENDLI_TOKEN") # VIDraft/Friendli token
openai_key = os.getenv("OPENAI_API_KEY")
# anthropic_key = os.getenv("ANTHROPIC_API_KEY") # ์ฃผ์ ์ฒ๋ฆฌ
# OpenAI ๋ผ์ด๋ธ๋ฌ๋ฆฌ ํ์ธ
try:
from openai import OpenAI
openai_available = True
except ImportError:
openai_available = False
print("OpenAI library not available")
# Anthropic ๋ผ์ด๋ธ๋ฌ๋ฆฌ ํ์ธ - ์ฃผ์ ์ฒ๋ฆฌ
# try:
# import anthropic
# anthropic_available = True
# except ImportError:
# anthropic_available = False
# print("Anthropic library not available")
anthropic_available = False
results = {}
nodes = workflow_data.get("nodes", [])
edges = workflow_data.get("edges", [])
# ๋
ธ๋๋ฅผ ์์๋๋ก ์ฒ๋ฆฌ
for node in nodes:
node_id = node.get("id")
node_type = node.get("type", "")
node_data = node.get("data", {})
try:
if node_type in ["ChatInput", "textInput", "Input"]:
# UI์์ ์ ๊ณต๋ ์
๋ ฅ๊ฐ ์ฌ์ฉ
if node_id in input_values:
results[node_id] = input_values[node_id]
else:
# ๊ธฐ๋ณธ๊ฐ ์ฌ์ฉ
template = node_data.get("template", {})
default_value = template.get("input_value", {}).get("value", "")
results[node_id] = default_value
elif node_type == "textNode":
# ํ
์คํธ ๋
ธ๋๋ ์ฐ๊ฒฐ๋ ๋ชจ๋ ์
๋ ฅ์ ๊ฒฐํฉ
template = node_data.get("template", {})
base_text = template.get("text", {}).get("value", "")
# ์ฐ๊ฒฐ๋ ์
๋ ฅ๋ค ์์ง
connected_inputs = []
for edge in edges:
if edge.get("target") == node_id:
source_id = edge.get("source")
if source_id in results:
connected_inputs.append(f"{source_id}: {results[source_id]}")
# ๊ฒฐํฉ๋ ํ
์คํธ ์์ฑ
if connected_inputs:
combined_text = f"{base_text}\n\nInputs:\n" + "\n".join(connected_inputs)
results[node_id] = combined_text
else:
results[node_id] = base_text
elif node_type in ["llmNode", "OpenAIModel", "ChatModel"]:
# LLM ๋
ธ๋ ์ฒ๋ฆฌ
template = node_data.get("template", {})
# ํ๋ก๋ฐ์ด๋ ์ ๋ณด ์ถ์ถ - VIDraft ๋๋ OpenAI๋ง ํ์ฉ
provider_info = template.get("provider", {})
provider = provider_info.get("value", "OpenAI") if isinstance(provider_info, dict) else "OpenAI"
# provider๊ฐ VIDraft ๋๋ OpenAI๊ฐ ์๋ ๊ฒฝ์ฐ OpenAI๋ก ๊ธฐ๋ณธ ์ค์
if provider not in ["VIDraft", "OpenAI"]:
provider = "OpenAI"
# ๋ชจ๋ธ ์ ๋ณด ์ถ์ถ
if provider == "OpenAI":
# OpenAI๋ gpt-4.1-mini๋ก ๊ณ ์
model = "gpt-4.1-mini"
elif provider == "VIDraft":
# VIDraft๋ Gemma-3-r1984-27B๋ก ๊ณ ์
model = "Gemma-3-r1984-27B"
else:
model = "gpt-4.1-mini" # ๊ธฐ๋ณธ๊ฐ
# ์จ๋ ์ ๋ณด ์ถ์ถ
temp_info = template.get("temperature", {})
temperature = temp_info.get("value", 0.7) if isinstance(temp_info, dict) else 0.7
# ์์คํ
ํ๋กฌํํธ ์ถ์ถ
prompt_info = template.get("system_prompt", {})
system_prompt = prompt_info.get("value", "") if isinstance(prompt_info, dict) else ""
# ์
๋ ฅ ํ
์คํธ ์ฐพ๊ธฐ
input_text = ""
for edge in edges:
if edge.get("target") == node_id:
source_id = edge.get("source")
if source_id in results:
input_text = results[source_id]
break
# ์ค์ API ํธ์ถ
if provider == "OpenAI" and openai_key and openai_available:
try:
client = OpenAI(api_key=openai_key)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": input_text})
response = client.chat.completions.create(
model="gpt-4.1-mini", # ๊ณ ์ ๋ ๋ชจ๋ธ๋ช
messages=messages,
temperature=temperature,
max_tokens=1000
)
results[node_id] = response.choices[0].message.content
except Exception as e:
results[node_id] = f"[OpenAI Error: {str(e)}]"
# Anthropic ๊ด๋ จ ์ฝ๋ ์ฃผ์ ์ฒ๋ฆฌ
# elif provider == "Anthropic" and anthropic_key and anthropic_available:
# try:
# client = anthropic.Anthropic(api_key=anthropic_key)
#
# message = client.messages.create(
# model="claude-3-haiku-20240307",
# max_tokens=1000,
# temperature=temperature,
# system=system_prompt if system_prompt else None,
# messages=[{"role": "user", "content": input_text}]
# )
#
# results[node_id] = message.content[0].text
#
# except Exception as e:
# results[node_id] = f"[Anthropic Error: {str(e)}]"
elif provider == "VIDraft" and vidraft_token:
try:
import requests
headers = {
"Authorization": f"Bearer {vidraft_token}",
"Content-Type": "application/json"
}
# ๋ฉ์์ง ๊ตฌ์ฑ
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": input_text})
payload = {
"model": "dep89a2fld32mcm", # VIDraft ๋ชจ๋ธ ID
"messages": messages,
"max_tokens": 16384,
"temperature": temperature,
"top_p": 0.8,
"stream": False # ๋๊ธฐ ์คํ์ ์ํด False๋ก ์ค์
}
# VIDraft API endpoint
response = requests.post(
"https://api.friendli.ai/dedicated/v1/chat/completions",
headers=headers,
json=payload,
timeout=30
)
if response.status_code == 200:
response_json = response.json()
results[node_id] = response_json["choices"][0]["message"]["content"]
else:
results[node_id] = f"[VIDraft API Error: {response.status_code} - {response.text}]"
except Exception as e:
results[node_id] = f"[VIDraft Error: {str(e)}]"
else:
# API ํค๊ฐ ์๋ ๊ฒฝ์ฐ ์๋ฎฌ๋ ์ด์
results[node_id] = f"[Simulated {provider} Response to: {input_text[:50]}...]"
elif node_type in ["ChatOutput", "textOutput", "Output"]:
# ์ถ๋ ฅ ๋
ธ๋๋ ์ฐ๊ฒฐ๋ ๋
ธ๋์ ๊ฒฐ๊ณผ๋ฅผ ๊ฐ์ ธ์ด
for edge in edges:
if edge.get("target") == node_id:
source_id = edge.get("source")
if source_id in results:
results[node_id] = results[source_id]
break
except Exception as e:
results[node_id] = f"[Node Error: {str(e)}]"
print(f"Error processing node {node_id}: {traceback.format_exc()}")
return results
# -------------------------------------------------------------------
# ๐จ CSS
# -------------------------------------------------------------------
CSS = """
.main-container{max-width:1600px;margin:0 auto;}
.workflow-section{margin-bottom:2rem;min-height:500px;}
.button-row{display:flex;gap:1rem;justify-content:center;margin:1rem 0;}
.status-box{
padding:10px;border-radius:5px;margin-top:10px;
background:#f0f9ff;border:1px solid #3b82f6;color:#1e40af;
}
.component-description{
padding:24px;background:linear-gradient(135deg,#f8fafc 0%,#e2e8f0 100%);
border-left:4px solid #3b82f6;border-radius:12px;
box-shadow:0 2px 8px rgba(0,0,0,.05);margin:16px 0;
}
.workflow-container{position:relative;}
.ui-execution-section{
background:linear-gradient(135deg,#f0fdf4 0%,#dcfce7 100%);
padding:24px;border-radius:12px;margin:24px 0;
border:1px solid #86efac;
}
.powered-by{
text-align:center;color:#64748b;font-size:14px;
margin-top:8px;font-style:italic;
}
.sample-buttons{
display:grid;grid-template-columns:1fr 1fr;gap:0.5rem;
margin-top:0.5rem;
}
"""
# -------------------------------------------------------------------
# ๐ฅ๏ธ Gradio ์ฑ
# -------------------------------------------------------------------
with gr.Blocks(title="๐ญ MOUSE Workflow", theme=gr.themes.Soft(), css=CSS) as demo:
with gr.Column(elem_classes=["main-container"]):
gr.Markdown("# ๐ญ MOUSE Workflow")
gr.Markdown("**Visual Workflow Builder with Interactive UI Execution**")
gr.HTML('<p class="powered-by">@Powered by VIDraft & Huggingface gradio</p>')
gr.HTML(
"""
<div class="component-description">
<p style="font-size:16px;margin:0;">Build sophisticated workflows visually โข Import/Export JSON โข Generate interactive UI for end-users</p>
</div>
"""
)
# API Status Display
with gr.Accordion("๐ API Status", open=False):
gr.Markdown(f"""
**Available APIs:**
- FRIENDLI_TOKEN (VIDraft): {'โ
Connected' if os.getenv("FRIENDLI_TOKEN") else 'โ Not found'}
- OPENAI_API_KEY: {'โ
Connected' if os.getenv("OPENAI_API_KEY") else 'โ Not found'}
**Libraries:**
- OpenAI: {'โ
Installed' if OPENAI_AVAILABLE else 'โ Not installed'}
- Requests: {'โ
Installed' if REQUESTS_AVAILABLE else 'โ Not installed'}
**Available Models:**
- OpenAI: gpt-4.1-mini (fixed)
- VIDraft: Gemma-3-r1984-27B (model ID: dep89a2fld32mcm)
**Sample Workflows:**
- Basic Q&A: Simple question-answer flow
- VIDraft: Korean language example with Gemma model
- Multi-Input: Combine multiple inputs for personalized output
- Chain: Sequential processing with multiple outputs
*Note: Without API keys, the UI will simulate AI responses.*
""")
# State for storing workflow data
loaded_data = gr.State(None)
trigger_update = gr.State(False)
# โโโ Dynamic Workflow Container โโโ
with gr.Column(elem_classes=["workflow-container"]):
@gr.render(inputs=[loaded_data, trigger_update])
def render_workflow(data, trigger):
"""๋์ ์ผ๋ก WorkflowBuilder ๋ ๋๋ง"""
workflow_value = data if data else {"nodes": [], "edges": []}
return WorkflowBuilder(
label="๐จ Visual Workflow Designer",
info="Drag from sidebar โ Connect nodes โ Edit properties",
value=workflow_value,
elem_id="main_workflow"
)
# โโโ Import Section โโโ
with gr.Accordion("๐ฅ Import Workflow", open=True):
with gr.Row():
with gr.Column(scale=2):
import_json_text = gr.Code(
language="json",
label="Paste JSON here",
lines=8,
value='{\n "nodes": [],\n "edges": []\n}'
)
with gr.Column(scale=1):
file_upload = gr.File(
label="Or upload JSON file",
file_types=[".json"],
type="filepath"
)
btn_load = gr.Button("๐ฅ Load Workflow", variant="primary", size="lg")
# Sample buttons
gr.Markdown("**Sample Workflows:**")
with gr.Row():
btn_sample_basic = gr.Button("๐ฏ Basic Q&A", variant="secondary", scale=1)
btn_sample_vidraft = gr.Button("๐ค VIDraft", variant="secondary", scale=1)
with gr.Row():
btn_sample_multi = gr.Button("๐ Multi-Input", variant="secondary", scale=1)
btn_sample_chain = gr.Button("๐ Chain", variant="secondary", scale=1)
# Status
status_text = gr.Textbox(
label="Status",
value="Ready",
elem_classes=["status-box"],
interactive=False
)
# โโโ Export Section โโโ
gr.Markdown("## ๐พ Export")
with gr.Row():
with gr.Column(scale=3):
export_preview = gr.Code(
language="json",
label="Current Workflow JSON",
lines=8
)
with gr.Column(scale=1):
btn_preview = gr.Button("๐๏ธ Preview JSON", size="lg")
btn_download = gr.DownloadButton("๐พ Download JSON", size="lg")
# โโโ UI Execution Section โโโ
with gr.Column(elem_classes=["ui-execution-section"]):
gr.Markdown("## ๐ UI Execution")
gr.Markdown("Generate an interactive UI from your workflow for end-users")
btn_execute_ui = gr.Button("โถ๏ธ Generate & Run UI", variant="primary", size="lg")
# UI execution state
ui_workflow_data = gr.State(None)
# Dynamic UI container
@gr.render(inputs=[ui_workflow_data])
def render_execution_ui(workflow_data):
if not workflow_data or not workflow_data.get("nodes"):
gr.Markdown("*Load a workflow first, then click 'Generate & Run UI'*")
return
gr.Markdown("### ๐ Generated UI")
# Extract input and output nodes
input_nodes = []
output_nodes = []
for node in workflow_data.get("nodes", []):
node_type = node.get("type", "")
if node_type in ["ChatInput", "textInput", "Input", "numberInput"]:
input_nodes.append(node)
elif node_type in ["ChatOutput", "textOutput", "Output"]:
output_nodes.append(node)
elif node_type == "textNode":
# textNode๋ ์ค๊ฐ ์ฒ๋ฆฌ ๋
ธ๋๋ก, UI์๋ ํ์ํ์ง ์์
pass
# Create input components
input_components = {}
if input_nodes:
gr.Markdown("#### ๐ฅ Inputs")
for node in input_nodes:
node_id = node.get("id")
label = node.get("data", {}).get("label", node_id)
node_type = node.get("type")
# Get default value
template = node.get("data", {}).get("template", {})
default_value = template.get("input_value", {}).get("value", "")
if node_type == "numberInput":
input_components[node_id] = gr.Number(
label=label,
value=float(default_value) if default_value else 0
)
else:
input_components[node_id] = gr.Textbox(
label=label,
value=default_value,
lines=2,
placeholder="Enter your input..."
)
# Execute button
execute_btn = gr.Button("๐ฏ Execute", variant="primary")
# Create output components
output_components = {}
if output_nodes:
gr.Markdown("#### ๐ค Outputs")
for node in output_nodes:
node_id = node.get("id")
label = node.get("data", {}).get("label", node_id)
output_components[node_id] = gr.Textbox(
label=label,
interactive=False,
lines=3
)
# Execution log
gr.Markdown("#### ๐ Execution Log")
log_output = gr.Textbox(
label="Log",
interactive=False,
lines=5
)
# Define execution handler
def execute_ui_workflow(*input_values):
# Create input dictionary
inputs_dict = {}
input_keys = list(input_components.keys())
for i, key in enumerate(input_keys):
if i < len(input_values):
inputs_dict[key] = input_values[i]
# Check API status
log = "=== Workflow Execution Started ===\n"
log += f"Inputs provided: {len(inputs_dict)}\n"
# API ์ํ ํ์ธ
vidraft_token = os.getenv("FRIENDLI_TOKEN")
openai_key = os.getenv("OPENAI_API_KEY")
log += "\nAPI Status:\n"
log += f"- FRIENDLI_TOKEN (VIDraft): {'โ
Found' if vidraft_token else 'โ Not found'}\n"
log += f"- OPENAI_API_KEY: {'โ
Found' if openai_key else 'โ Not found'}\n"
if not vidraft_token and not openai_key:
log += "\nโ ๏ธ No API keys found. Results will be simulated.\n"
log += "To get real AI responses, set API keys in environment variables.\n"
log += "\n--- Processing Nodes ---\n"
try:
results = execute_workflow_simple(workflow_data, inputs_dict)
# Prepare outputs
output_values = []
for node_id in output_components.keys():
value = results.get(node_id, "No output")
output_values.append(value)
# Log ๊ธธ์ด ์ ํ
display_value = value[:100] + "..." if len(str(value)) > 100 else value
log += f"\nOutput [{node_id}]: {display_value}\n"
log += "\n=== Execution Completed Successfully! ===\n"
output_values.append(log)
return output_values
except Exception as e:
error_msg = f"โ Error: {str(e)}"
log += f"\n{error_msg}\n"
log += "=== Execution Failed ===\n"
return [error_msg] * len(output_components) + [log]
# Connect execution
all_inputs = list(input_components.values())
all_outputs = list(output_components.values()) + [log_output]
execute_btn.click(
fn=execute_ui_workflow,
inputs=all_inputs,
outputs=all_outputs
)
# โโโ Event Handlers โโโ
# Load workflow (from text or file)
def load_workflow(json_text, file_obj):
data, status = load_json_from_text_or_file(json_text, file_obj)
if data:
return data, status, json_text if not file_obj else export_pretty(data)
else:
return None, status, gr.update()
btn_load.click(
fn=load_workflow,
inputs=[import_json_text, file_upload],
outputs=[loaded_data, status_text, import_json_text]
).then(
fn=lambda current_trigger: not current_trigger,
inputs=trigger_update,
outputs=trigger_update
)
# Auto-load when file is uploaded
file_upload.change(
fn=load_workflow,
inputs=[import_json_text, file_upload],
outputs=[loaded_data, status_text, import_json_text]
).then(
fn=lambda current_trigger: not current_trigger,
inputs=trigger_update,
outputs=trigger_update
)
# Load samples
btn_sample_basic.click(
fn=lambda: (create_sample_workflow("basic"), "โ
Basic Q&A sample loaded", export_pretty(create_sample_workflow("basic"))),
outputs=[loaded_data, status_text, import_json_text]
).then(
fn=lambda current_trigger: not current_trigger,
inputs=trigger_update,
outputs=trigger_update
)
btn_sample_vidraft.click(
fn=lambda: (create_sample_workflow("vidraft"), "โ
VIDraft sample loaded", export_pretty(create_sample_workflow("vidraft"))),
outputs=[loaded_data, status_text, import_json_text]
).then(
fn=lambda current_trigger: not current_trigger,
inputs=trigger_update,
outputs=trigger_update
)
btn_sample_multi.click(
fn=lambda: (create_sample_workflow("multi_input"), "โ
Multi-input sample loaded", export_pretty(create_sample_workflow("multi_input"))),
outputs=[loaded_data, status_text, import_json_text]
).then(
fn=lambda current_trigger: not current_trigger,
inputs=trigger_update,
outputs=trigger_update
)
btn_sample_chain.click(
fn=lambda: (create_sample_workflow("chain"), "โ
Chain processing sample loaded", export_pretty(create_sample_workflow("chain"))),
outputs=[loaded_data, status_text, import_json_text]
).then(
fn=lambda current_trigger: not current_trigger,
inputs=trigger_update,
outputs=trigger_update
)
# Preview current workflow
btn_preview.click(
fn=export_pretty,
inputs=loaded_data,
outputs=export_preview
)
# Download workflow
btn_download.click(
fn=export_file,
inputs=loaded_data
)
# Generate UI execution
btn_execute_ui.click(
fn=lambda data: data,
inputs=loaded_data,
outputs=ui_workflow_data
)
# Auto-update export preview when workflow changes
loaded_data.change(
fn=export_pretty,
inputs=loaded_data,
outputs=export_preview
)
# -------------------------------------------------------------------
# ๐ ์คํ
# -------------------------------------------------------------------
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", show_error=True) |