Spaces:
Sleeping
Sleeping
usmansafdarktk
commited on
Commit
·
1574d49
1
Parent(s):
c963314
Add torch import to fix model loading error
Browse files
main.py
CHANGED
@@ -1,37 +1,38 @@
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
from fastapi import FastAPI, HTTPException
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import pipeline
|
5 |
-
import logging
|
6 |
|
7 |
-
# Set up logging
|
8 |
logging.basicConfig(level=logging.INFO)
|
9 |
logger = logging.getLogger(__name__)
|
10 |
|
11 |
-
|
12 |
-
logger.info(f"TRANSFORMERS_CACHE set to: {os.getenv('TRANSFORMERS_CACHE', '/.cache')}")
|
13 |
-
|
14 |
-
app = FastAPI(title="LaMini-LM API",
|
15 |
-
description="API for text generation using LaMini-GPT-774M", version="1.0.0")
|
16 |
|
17 |
-
# Define request model
|
18 |
class TextGenerationRequest(BaseModel):
|
19 |
-
instruction: str
|
20 |
max_length: int = 100
|
21 |
temperature: float = 1.0
|
22 |
top_p: float = 0.9
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
generator
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
@app.get("/health")
|
37 |
async def health_check():
|
@@ -43,10 +44,11 @@ async def root():
|
|
43 |
|
44 |
@app.post("/generate")
|
45 |
async def generate_text(request: TextGenerationRequest):
|
|
|
|
|
46 |
if generator is None:
|
47 |
raise HTTPException(status_code=503, detail="Model not loaded. Check server logs.")
|
48 |
try:
|
49 |
-
# Validate inputs
|
50 |
if not request.instruction.strip():
|
51 |
raise HTTPException(status_code=400, detail="Instruction cannot be empty")
|
52 |
if request.max_length < 10 or request.max_length > 500:
|
@@ -56,7 +58,6 @@ async def generate_text(request: TextGenerationRequest):
|
|
56 |
if request.top_p <= 0 or request.top_p > 1:
|
57 |
raise HTTPException(status_code=400, detail="top_p must be between 0 and 1")
|
58 |
|
59 |
-
# Generate text
|
60 |
logger.info(f"Generating text for instruction: {request.instruction[:50]}...")
|
61 |
wrapper = "Instruction: You are a helpful assistant. Please respond to the following instruction.\n\nInstruction: {}\n\nResponse:".format(
|
62 |
request.instruction)
|
|
|
1 |
import os
|
2 |
+
import logging
|
3 |
+
import torch
|
4 |
+
import gc
|
5 |
from fastapi import FastAPI, HTTPException
|
6 |
from pydantic import BaseModel
|
7 |
from transformers import pipeline
|
|
|
8 |
|
|
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
logger = logging.getLogger(__name__)
|
11 |
|
12 |
+
app = FastAPI(title="LaMini-LM API", description="API for text generation using LaMini-GPT-774M", version="1.0.0")
|
|
|
|
|
|
|
|
|
13 |
|
|
|
14 |
class TextGenerationRequest(BaseModel):
|
15 |
+
instruction: str
|
16 |
max_length: int = 100
|
17 |
temperature: float = 1.0
|
18 |
top_p: float = 0.9
|
19 |
|
20 |
+
generator = None
|
21 |
+
|
22 |
+
def load_model():
|
23 |
+
global generator
|
24 |
+
if generator is None:
|
25 |
+
try:
|
26 |
+
logger.info("Loading LaMini-GPT-774M model...")
|
27 |
+
generator = pipeline('text-generation', model='MBZUAI/LaMini-GPT-774M', device=-1)
|
28 |
+
logger.info("Model loaded successfully.")
|
29 |
+
if torch.cuda.is_available():
|
30 |
+
torch.cuda.empty_cache()
|
31 |
+
gc.collect()
|
32 |
+
except Exception as e:
|
33 |
+
logger.error(f"Failed to load model: {str(e)}")
|
34 |
+
generator = None
|
35 |
+
raise Exception(f"Model loading failed: {str(e)}")
|
36 |
|
37 |
@app.get("/health")
|
38 |
async def health_check():
|
|
|
44 |
|
45 |
@app.post("/generate")
|
46 |
async def generate_text(request: TextGenerationRequest):
|
47 |
+
if generator is None:
|
48 |
+
load_model()
|
49 |
if generator is None:
|
50 |
raise HTTPException(status_code=503, detail="Model not loaded. Check server logs.")
|
51 |
try:
|
|
|
52 |
if not request.instruction.strip():
|
53 |
raise HTTPException(status_code=400, detail="Instruction cannot be empty")
|
54 |
if request.max_length < 10 or request.max_length > 500:
|
|
|
58 |
if request.top_p <= 0 or request.top_p > 1:
|
59 |
raise HTTPException(status_code=400, detail="top_p must be between 0 and 1")
|
60 |
|
|
|
61 |
logger.info(f"Generating text for instruction: {request.instruction[:50]}...")
|
62 |
wrapper = "Instruction: You are a helpful assistant. Please respond to the following instruction.\n\nInstruction: {}\n\nResponse:".format(
|
63 |
request.instruction)
|