Spaces:
Sleeping
Sleeping
File size: 2,892 Bytes
919f56e bd77c32 919f56e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline
import logging
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Log cache directory
logger.info(f"TRANSFORMERS_CACHE set to: {os.getenv('TRANSFORMERS_CACHE', '/.cache')}")
app = FastAPI(title="LaMini-LM API",
description="API for text generation using LaMini-GPT-774M", version="1.0.0")
# Define request model
class TextGenerationRequest(BaseModel):
prompt: str
max_length: int = 100
temperature: float = 1.0
top_p: float = 0.9
# Load model (cached after first load)
try:
logger.info("Loading LaMini-GPT-774M model...")
# device=-1 for CPU
generator = pipeline(
'text-generation', model='MBZUAI/LaMini-GPT-774M', device=-1)
logger.info("Model loaded successfully.")
except Exception as e:
logger.error(f"Failed to load model: {str(e)}")
raise Exception(f"Model loading failed: {str(e)}")
@app.post("/generate")
async def generate_text(request: TextGenerationRequest):
"""
Generate text based on the input prompt using LaMini-GPT-774M.
"""
try:
# Validate inputs
if not request.prompt.strip():
raise HTTPException(
status_code=400, detail="Prompt cannot be empty")
if request.max_length < 10 or request.max_length > 500:
raise HTTPException(
status_code=400, detail="max_length must be between 10 and 500")
if request.temperature <= 0 or request.temperature > 2:
raise HTTPException(
status_code=400, detail="temperature must be between 0 and 2")
if request.top_p <= 0 or request.top_p > 1:
raise HTTPException(
status_code=400, detail="top_p must be between 0 and 1")
# Generate text
logger.info(f"Generating text for prompt: {request.prompt[:50]}...")
wrapper = "Instruction: You are a helpful assistant. Please respond to the following prompt.\n\nPrompt: {}\n\nResponse:".format(
request.prompt)
outputs = generator(
wrapper,
max_length=request.max_length,
temperature=request.temperature,
top_p=request.top_p,
num_return_sequences=1,
do_sample=True
)
generated_text = outputs[0]['generated_text'].replace(
wrapper, "").strip()
return {"generated_text": generated_text}
except Exception as e:
logger.error(f"Error during text generation: {str(e)}")
raise HTTPException(
status_code=500, detail=f"Text generation failed: {str(e)}")
@app.get("/")
async def root():
"""
Root endpoint with basic info.
"""
return {"message": "Welcome to the LaMini-LM API. Use POST /generate to generate text."}
|