Spaces:
Configuration error
Configuration error
from flask import Flask, request, jsonify | |
from flask_cors import CORS | |
import torch | |
import pandas as pd | |
import math | |
import os | |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/.cache" | |
os.environ["HF_HOME"] = "/tmp/.cache" | |
os.makedirs("/tmp/.cache", exist_ok=True) | |
from sentence_transformers import SentenceTransformer, util | |
app = Flask(__name__) | |
CORS(app) | |
# Constants | |
PRODUCTS_PER_PAGE = 35 | |
TOP_ECO_COUNT = 5 | |
PAGE2_ECO_RATIO = 0.4 | |
# Load model and data | |
print("π Loading model and data...") | |
model = SentenceTransformer("Ujjwal-32/Product-Recommender") | |
df = pd.read_csv("products_clean_updated1.csv") | |
product_embeddings = torch.load("embeddings_updated1.pt") | |
print("β Model and embeddings loaded.") | |
def sanitize_product(product): | |
return { | |
k: (None if isinstance(v, float) and math.isnan(v) else v) | |
for k, v in product.items() | |
} | |
def home(): | |
return "β GreenKart Flask Server is running!" | |
def search_products(): | |
query = request.args.get("query", "").strip() | |
page = int(request.args.get("page", 1)) | |
if not query: | |
return jsonify({"error": "Missing 'query' parameter"}), 400 | |
# Encode query and compute similarity | |
query_embedding = model.encode(query, convert_to_tensor=True) | |
cosine_scores = util.cos_sim(query_embedding, product_embeddings)[0] | |
df["similarity"] = cosine_scores.cpu().numpy() | |
# Sort products by similarity | |
sorted_df = df.sort_values(by="similarity", ascending=False) | |
# Split into eco and non-eco | |
eco_df = sorted_df[ | |
(sorted_df["isOrganic"] == True) & (sorted_df["sustainableScore"] >= 75) | |
].reset_index(drop=True) | |
non_eco_df = sorted_df[~sorted_df.index.isin(eco_df.index)].reset_index(drop=True) | |
if page == 1: | |
# Page 1: 5 top eco + 18 eco + 27 non-eco (shuffled) | |
top_eco = eco_df.head(TOP_ECO_COUNT) | |
rest_eco = eco_df.iloc[TOP_ECO_COUNT : TOP_ECO_COUNT + 18] | |
rest_non_eco = non_eco_df.head(27) | |
mixed_rest = pd.concat([rest_eco, rest_non_eco]).sample(frac=1, random_state=42) | |
final_df = pd.concat([top_eco, mixed_rest]).reset_index(drop=True) | |
else: | |
# Page 2 and onwards | |
eco_count = int(PRODUCTS_PER_PAGE * PAGE2_ECO_RATIO) | |
non_eco_count = PRODUCTS_PER_PAGE - eco_count | |
eco_offset = TOP_ECO_COUNT + 18 + (page - 2) * eco_count | |
non_eco_offset = 27 + (page - 2) * non_eco_count | |
eco_slice = eco_df.iloc[eco_offset : eco_offset + eco_count] | |
non_eco_slice = non_eco_df.iloc[non_eco_offset : non_eco_offset + non_eco_count] | |
final_df = ( | |
pd.concat([eco_slice, non_eco_slice]) | |
.sample(frac=1, random_state=page) | |
.reset_index(drop=True) | |
) | |
# β Convert images string to list in all cases | |
final_result = [] | |
for _, row in final_df.iterrows(): | |
images = [] | |
if isinstance(row["images"], str): | |
images = [img.strip() for img in row["images"].split(",") if img.strip()] | |
if not images: | |
continue # Skip if image list is empty | |
product = row.to_dict() | |
product["images"] = images | |
product = sanitize_product(product) | |
final_result.append(product) | |
return jsonify(final_result) | |
def search_green_products(): | |
query = request.args.get("query", "").strip() | |
page = int(request.args.get("page", 1)) | |
if not query: | |
return jsonify({"error": "Missing 'query' parameter"}), 400 | |
query_embedding = model.encode(query, convert_to_tensor=True) | |
cosine_scores = util.cos_sim(query_embedding, product_embeddings)[0] | |
df["similarity"] = cosine_scores.cpu().numpy() | |
sorted_eco_df = ( | |
df[(df["isOrganic"] == True)] | |
.sort_values(by="similarity", ascending=False) | |
.reset_index(drop=True) | |
) | |
start = (page - 1) * PRODUCTS_PER_PAGE | |
end = start + PRODUCTS_PER_PAGE | |
page_df = sorted_eco_df.iloc[start:end] | |
final_result = [] | |
for _, row in page_df.iterrows(): | |
images = [] | |
if isinstance(row["images"], str): | |
images = [img.strip() for img in row["images"].split(",") if img.strip()] | |
if not images: | |
continue # Skip products without valid images | |
product = row.to_dict() | |
product["images"] = images | |
product = sanitize_product(product) | |
final_result.append(product) | |
return jsonify(final_result) | |
if __name__ == "__main__": | |
port = int(os.environ.get("PORT", 7860)) | |
app.run(host="0.0.0.0", port=port, debug=True) | |