Lj Miranda
commited on
Add ability to incorporate external submissions (#7)
Browse files- app.py +68 -9
- src/about.py +8 -21
- src/schema.py +160 -49
app.py
CHANGED
|
@@ -1,10 +1,13 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
import re
|
|
|
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
| 6 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 7 |
from datasets import load_dataset
|
|
|
|
| 8 |
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
|
| 9 |
from huggingface_hub import HfApi
|
| 10 |
|
|
@@ -13,6 +16,13 @@ from src.display.css_html_js import custom_css
|
|
| 13 |
from src.plots import plot_cost_efficiency, plot_parameter_efficiency
|
| 14 |
from src.schema import AutoEvalColumn, EvalResult, fields
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
# 1. Initialization
|
| 17 |
_hf_token = os.environ.get("HF_TOKEN")
|
| 18 |
if not _hf_token:
|
|
@@ -22,6 +32,7 @@ api = HfApi(token=_hf_token)
|
|
| 22 |
|
| 23 |
REPO_ID = "UD-Filipino/filbench-leaderboard"
|
| 24 |
REPO_RESULTS = "UD-Filipino/filbench-results"
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
def restart_space():
|
|
@@ -29,11 +40,44 @@ def restart_space():
|
|
| 29 |
|
| 30 |
|
| 31 |
# 2. Load and populate leaderboard data
|
| 32 |
-
def get_results(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
results = load_dataset(source, split="train").to_pandas().to_dict(orient="records")
|
| 34 |
raw_data = [EvalResult.init_from_dict(result) for result in results]
|
| 35 |
-
all_data_json = [v.to_dict() for v in raw_data]
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
df = pd.DataFrame.from_records(all_data_json)
|
| 38 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 39 |
df["Incomplete"] = ~df.isna().any(axis=1)
|
|
@@ -58,8 +102,12 @@ def get_results(source: str, aggregate: bool = False) -> tuple[pd.DataFrame, lis
|
|
| 58 |
return df, master_columns
|
| 59 |
|
| 60 |
|
| 61 |
-
def init_leaderboard(
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
return Leaderboard(
|
| 65 |
value=df,
|
|
@@ -80,6 +128,7 @@ def init_leaderboard(source: str, aggregate: bool = False) -> Leaderboard:
|
|
| 80 |
filter_columns=[
|
| 81 |
# fmt: off
|
| 82 |
ColumnFilter("Incomplete", type="boolean", label="Hide incomplete evaluations", default=True),
|
|
|
|
| 83 |
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
| 84 |
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model type"),
|
| 85 |
ColumnFilter(AutoEvalColumn.multilingual.name, type="checkboxgroup", label="Multilinguality"),
|
|
@@ -97,8 +146,12 @@ def init_leaderboard(source: str, aggregate: bool = False) -> Leaderboard:
|
|
| 97 |
|
| 98 |
|
| 99 |
def get_clean_df() -> pd.DataFrame:
|
| 100 |
-
df, _ = get_results(
|
| 101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
|
| 103 |
# Cleanup
|
| 104 |
def extract_names(html_string):
|
|
@@ -165,19 +218,25 @@ def download_results():
|
|
| 165 |
demo = gr.Blocks(css=custom_css)
|
| 166 |
with demo:
|
| 167 |
with gr.Column(scale=6):
|
| 168 |
-
num_models = len(
|
|
|
|
|
|
|
| 169 |
gr.Markdown(about.TOP_TEXT.format(str(num_models)))
|
| 170 |
|
| 171 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 172 |
with gr.TabItem(
|
| 173 |
"🏅 FilBench Leaderboard", elem_id="llm-benchmark-tab-table", id=0
|
| 174 |
):
|
| 175 |
-
leaderboard = init_leaderboard(
|
|
|
|
|
|
|
| 176 |
|
| 177 |
with gr.TabItem(
|
| 178 |
"🔍 FilBench - Detailed", elem_id="llm-benchmark-tab-table", id=1
|
| 179 |
):
|
| 180 |
-
leaderboard = init_leaderboard(
|
|
|
|
|
|
|
| 181 |
|
| 182 |
with gr.TabItem("📊 Analysis", id=2):
|
| 183 |
df = get_clean_df()
|
|
|
|
| 1 |
+
import logging
|
| 2 |
import os
|
| 3 |
import re
|
| 4 |
+
import sys
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
import pandas as pd
|
| 8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 9 |
from datasets import load_dataset
|
| 10 |
+
from datasets.data_files import EmptyDatasetError
|
| 11 |
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
|
| 12 |
from huggingface_hub import HfApi
|
| 13 |
|
|
|
|
| 16 |
from src.plots import plot_cost_efficiency, plot_parameter_efficiency
|
| 17 |
from src.schema import AutoEvalColumn, EvalResult, fields
|
| 18 |
|
| 19 |
+
logging.basicConfig(
|
| 20 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 21 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
| 22 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
| 23 |
+
level=logging.INFO,
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
# 1. Initialization
|
| 27 |
_hf_token = os.environ.get("HF_TOKEN")
|
| 28 |
if not _hf_token:
|
|
|
|
| 32 |
|
| 33 |
REPO_ID = "UD-Filipino/filbench-leaderboard"
|
| 34 |
REPO_RESULTS = "UD-Filipino/filbench-results"
|
| 35 |
+
SUBMISSION_RESULTS = "UD-Filipino/filbench-results-submission"
|
| 36 |
|
| 37 |
|
| 38 |
def restart_space():
|
|
|
|
| 40 |
|
| 41 |
|
| 42 |
# 2. Load and populate leaderboard data
|
| 43 |
+
def get_results(
|
| 44 |
+
source: str, aggregate: bool = False, submissions: str = None
|
| 45 |
+
) -> tuple[pd.DataFrame, list]:
|
| 46 |
+
"""Load results from a given source and return a DataFrame with the relevant columns.
|
| 47 |
+
|
| 48 |
+
If `aggregate` is True, it returns the aggregated results.
|
| 49 |
+
|
| 50 |
+
source (str): The source dataset to load results from.
|
| 51 |
+
aggregate (bool): Whether to return aggregated results or not.
|
| 52 |
+
submissions (str, optional): The submissions dataset to load results from.
|
| 53 |
+
RETURNS (tuple[pd.DataFrame, list]): A tuple containing the DataFrame with results and a list of master columns.
|
| 54 |
+
"""
|
| 55 |
results = load_dataset(source, split="train").to_pandas().to_dict(orient="records")
|
| 56 |
raw_data = [EvalResult.init_from_dict(result) for result in results]
|
|
|
|
| 57 |
|
| 58 |
+
if submissions:
|
| 59 |
+
try:
|
| 60 |
+
submission_results = (
|
| 61 |
+
load_dataset(
|
| 62 |
+
submissions, split="train", download_mode="force_redownload"
|
| 63 |
+
)
|
| 64 |
+
.to_pandas()
|
| 65 |
+
.to_dict(orient="records")
|
| 66 |
+
)
|
| 67 |
+
except EmptyDatasetError:
|
| 68 |
+
logging.info("Empty dataset for submissions, skipping...")
|
| 69 |
+
submission_results = []
|
| 70 |
+
if len(submission_results) == 0:
|
| 71 |
+
logging.info("No external submissions found!")
|
| 72 |
+
else:
|
| 73 |
+
logging.info(f"Found {len(submission_results)} submission/s!")
|
| 74 |
+
|
| 75 |
+
raw_data += [
|
| 76 |
+
EvalResult.init_from_dict(result, is_submission=True)
|
| 77 |
+
for result in submission_results
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
all_data_json = [v.to_dict() for v in raw_data]
|
| 81 |
df = pd.DataFrame.from_records(all_data_json)
|
| 82 |
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
| 83 |
df["Incomplete"] = ~df.isna().any(axis=1)
|
|
|
|
| 102 |
return df, master_columns
|
| 103 |
|
| 104 |
|
| 105 |
+
def init_leaderboard(
|
| 106 |
+
source: str, aggregate: bool = False, submissions: str = None
|
| 107 |
+
) -> Leaderboard:
|
| 108 |
+
df, master_columns = get_results(
|
| 109 |
+
source=source, aggregate=aggregate, submissions=submissions
|
| 110 |
+
)
|
| 111 |
|
| 112 |
return Leaderboard(
|
| 113 |
value=df,
|
|
|
|
| 128 |
filter_columns=[
|
| 129 |
# fmt: off
|
| 130 |
ColumnFilter("Incomplete", type="boolean", label="Hide incomplete evaluations", default=True),
|
| 131 |
+
ColumnFilter("Submission", type="boolean", label="Show only submitted results", default=False),
|
| 132 |
# ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
|
| 133 |
ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model type"),
|
| 134 |
ColumnFilter(AutoEvalColumn.multilingual.name, type="checkboxgroup", label="Multilinguality"),
|
|
|
|
| 146 |
|
| 147 |
|
| 148 |
def get_clean_df() -> pd.DataFrame:
|
| 149 |
+
df, _ = get_results(
|
| 150 |
+
source=REPO_RESULTS, aggregate=False, submissions=SUBMISSION_RESULTS
|
| 151 |
+
)
|
| 152 |
+
df_agg, _ = get_results(
|
| 153 |
+
source=REPO_RESULTS, aggregate=True, submissions=SUBMISSION_RESULTS
|
| 154 |
+
)
|
| 155 |
|
| 156 |
# Cleanup
|
| 157 |
def extract_names(html_string):
|
|
|
|
| 218 |
demo = gr.Blocks(css=custom_css)
|
| 219 |
with demo:
|
| 220 |
with gr.Column(scale=6):
|
| 221 |
+
num_models = len(
|
| 222 |
+
get_results(REPO_RESULTS, aggregate=True, submissions=SUBMISSION_RESULTS)[0]
|
| 223 |
+
)
|
| 224 |
gr.Markdown(about.TOP_TEXT.format(str(num_models)))
|
| 225 |
|
| 226 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 227 |
with gr.TabItem(
|
| 228 |
"🏅 FilBench Leaderboard", elem_id="llm-benchmark-tab-table", id=0
|
| 229 |
):
|
| 230 |
+
leaderboard = init_leaderboard(
|
| 231 |
+
REPO_RESULTS, aggregate=True, submissions=SUBMISSION_RESULTS
|
| 232 |
+
)
|
| 233 |
|
| 234 |
with gr.TabItem(
|
| 235 |
"🔍 FilBench - Detailed", elem_id="llm-benchmark-tab-table", id=1
|
| 236 |
):
|
| 237 |
+
leaderboard = init_leaderboard(
|
| 238 |
+
REPO_RESULTS, aggregate=False, submissions=SUBMISSION_RESULTS
|
| 239 |
+
)
|
| 240 |
|
| 241 |
with gr.TabItem("📊 Analysis", id=2):
|
| 242 |
df = get_clean_df()
|
src/about.py
CHANGED
|
@@ -11,7 +11,8 @@ current_time = datetime.now(pacific_tz).strftime("%H:%M %Z, %d %b %Y")
|
|
| 11 |
TOP_TEXT = f"""
|
| 12 |
# FilBench: An Open LLM Leaderboard for Filipino
|
| 13 |
|
| 14 |
-
[Code](https://github.com/filbench/filbench) | [
|
|
|
|
| 15 |
"""
|
| 16 |
|
| 17 |
# Leaderboard reproducibility
|
|
@@ -27,7 +28,6 @@ We average four core sections (weighted by the number of instances):
|
|
| 27 |
3. **Reading Comprehension:** Contains more focused natural language understanding (NLU) tasks and questions from readability benchmarks.
|
| 28 |
4. **Generation:** Contains instances for natural language generation (NLG), more focused on translation.
|
| 29 |
|
| 30 |
-
|
| 31 |
## Evaluation Runner
|
| 32 |
|
| 33 |
We use our own fork of [lighteval](https://github.com/filbench/lighteval) to perform evaluations.
|
|
@@ -35,30 +35,17 @@ We highly recommend using the vLLM backend for faster inference.
|
|
| 35 |
Sequentially, evaluating on FilBench can take 4.93 hours on 2 NVIDIA H100 GPUs.
|
| 36 |
However, the evaluation suite can be parallelized per benchmark, where the longest-running task can take approximately 1 hour and 28 minutes, and the shortest task takes only 5.86 minutes.
|
| 37 |
|
| 38 |
-
To evaluate your model on FilBench and for it to appear in the leaderboard, please follow
|
| 39 |
-
|
| 40 |
-
1. First clone the FilBench's lighteval repository and install all dependencies:
|
| 41 |
-
|
| 42 |
-
```sh
|
| 43 |
-
git clone https://github.com/filbench/lighteval.git
|
| 44 |
-
python3 -m venv venv
|
| 45 |
-
pip install -e .[dev,vllm]
|
| 46 |
-
```
|
| 47 |
-
|
| 48 |
-
2. Run the evaluation runner via vLLM
|
| 49 |
|
| 50 |
-
|
| 51 |
-
python3 -m lighteval vllm ${MODEL_NAME} ${TASK_NAME} \\
|
| 52 |
-
--push-to-hub \\
|
| 53 |
-
--results-org UD-Filipino \\
|
| 54 |
-
--custom-tasks community_tasks/filbench_evals.py
|
| 55 |
-
```
|
| 56 |
|
| 57 |
-
|
|
|
|
| 58 |
|
| 59 |
## Acknowledgements
|
| 60 |
|
| 61 |
-
|
|
|
|
| 62 |
"""
|
| 63 |
|
| 64 |
# Citation information
|
|
|
|
| 11 |
TOP_TEXT = f"""
|
| 12 |
# FilBench: An Open LLM Leaderboard for Filipino
|
| 13 |
|
| 14 |
+
[Code](https://github.com/filbench/filbench-eval) | [Paper (<i>Coming soon!</i>)]() | Total Models: {{}} | Last restart (PHT): {current_time}
|
| 15 |
+
📥: Indicates model submissions from the community. If you wish to submit your model evaluations, then please check our instructions on [GitHub](https://github.com/filbench/filbench-eval).
|
| 16 |
"""
|
| 17 |
|
| 18 |
# Leaderboard reproducibility
|
|
|
|
| 28 |
3. **Reading Comprehension:** Contains more focused natural language understanding (NLU) tasks and questions from readability benchmarks.
|
| 29 |
4. **Generation:** Contains instances for natural language generation (NLG), more focused on translation.
|
| 30 |
|
|
|
|
| 31 |
## Evaluation Runner
|
| 32 |
|
| 33 |
We use our own fork of [lighteval](https://github.com/filbench/lighteval) to perform evaluations.
|
|
|
|
| 35 |
Sequentially, evaluating on FilBench can take 4.93 hours on 2 NVIDIA H100 GPUs.
|
| 36 |
However, the evaluation suite can be parallelized per benchmark, where the longest-running task can take approximately 1 hour and 28 minutes, and the shortest task takes only 5.86 minutes.
|
| 37 |
|
| 38 |
+
To evaluate your model on FilBench and for it to appear in the leaderboard, please follow the steps in our [Github repository](https://github.com/filbench/filbench-eval).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
## Contact
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
This work was done by Lj V. Miranda ([@ljvmiranda921](https://github.com/ljvmiranda921)), Elyanah Aco ([@elyanah-aco](https://github.com/elyanah-aco)), Conner Manuel ([@connermanuel](https://github.com/connermanuel)), Blaise Cruz ([@jcblaisecruz02](https://github.com/jcblaisecruz02)), and Joseph Imperial ([@imperialite](https://github.com/imperialite)).
|
| 43 |
+
For any questions, please reach out to us via filbench-eval@googlegroups.com or through our [GitHub Issues](https://github.com/filbench/filbench-eval/issues).
|
| 44 |
|
| 45 |
## Acknowledgements
|
| 46 |
|
| 47 |
+
We would like to thank [Cohere Labs](https://cohere.com/research) for providing credits through the [Cohere Research Grant](https://cohere.com/research/grants) to run the Aya model series, and [Together AI](https://together.ai) for additional computational credits for running several open models.
|
| 48 |
+
We also acknowledge the Hugging Face team, particularly the OpenEvals team (Clémentine Fourrier [@clefourrier](https://github.com/clefourrier) and Nathan Habib [@NathanHB](https://github.com/NathanHB)) and Daniel van Strien [@davanstrien](https://github.com/davanstrien), for their support in publishing the FilBench blog post.
|
| 49 |
"""
|
| 50 |
|
| 51 |
# Citation information
|
src/schema.py
CHANGED
|
@@ -1,9 +1,18 @@
|
|
|
|
|
|
|
|
| 1 |
from dataclasses import dataclass, make_dataclass
|
| 2 |
from enum import Enum
|
| 3 |
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
-
from src.display.formatting import make_clickable_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def fields(raw_class):
|
|
@@ -147,6 +156,8 @@ auto_eval_cols = [
|
|
| 147 |
["param_size", ColumnContent, ColumnContent("# Parameters", "number", False, meta=True)],
|
| 148 |
["multilingual", ColumnContent, ColumnContent("Multilingual", "markdown", False, meta=True)],
|
| 149 |
["model_type", ColumnContent, ColumnContent("Model Type", "markdown", False, meta=True)],
|
|
|
|
|
|
|
| 150 |
# fmt: on
|
| 151 |
]
|
| 152 |
for task in Tasks:
|
|
@@ -199,16 +210,28 @@ class EvalResult:
|
|
| 199 |
average: float
|
| 200 |
aggregate_results: dict
|
| 201 |
precision: Precision = Precision.Unknown
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
@classmethod
|
| 204 |
-
def init_from_dict(self, data: dict):
|
| 205 |
"""Populate results from a dictionary"""
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
precision = Precision.from_str(config.get("model_dtype"))
|
| 211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
org_and_model = org_and_model.split("/", 1)
|
| 213 |
|
| 214 |
if len(org_and_model) == 1:
|
|
@@ -221,35 +244,105 @@ class EvalResult:
|
|
| 221 |
result_key = f"{org}_{model}_{precision.value.name}"
|
| 222 |
full_model = "/".join(org_and_model)
|
| 223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
# Format all results
|
| 225 |
-
|
| 226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 227 |
for task in Tasks:
|
| 228 |
task = task.value
|
| 229 |
-
if
|
| 230 |
-
score =
|
| 231 |
if "acc_" in task.metric:
|
| 232 |
score = score * 100.0
|
| 233 |
if "rougeL" in task.metric:
|
| 234 |
score = score * 100.0
|
| 235 |
-
|
| 236 |
else:
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
# task = task.value
|
| 243 |
-
# if results[task.benchmark]:
|
| 244 |
-
# score = results[task.benchmark]
|
| 245 |
-
# else:
|
| 246 |
-
# score = 0
|
| 247 |
-
# weighted_total += score * task.num_samples
|
| 248 |
-
|
| 249 |
-
# total = sum([task.value.num_samples for task in Tasks])
|
| 250 |
-
# average = weighted_total / total
|
| 251 |
-
|
| 252 |
-
# Compute weighted average for each category
|
| 253 |
aggregate_results = {}
|
| 254 |
for task_category in TaskCategory:
|
| 255 |
tasks = [
|
|
@@ -266,41 +359,59 @@ class EvalResult:
|
|
| 266 |
aggregate_results[task_category.value] = (
|
| 267 |
weighted_total_category / total_category
|
| 268 |
)
|
|
|
|
| 269 |
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
def to_dict(self):
|
| 285 |
"""Converts the EvalResult to a dict compatible with our dataframe display"""
|
| 286 |
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
data_dict = {
|
| 297 |
"eval_name": self.eval_name, # not a column, just a save name
|
| 298 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 299 |
-
AutoEvalColumn.model.name:
|
| 300 |
AutoEvalColumn.average.name: self.average,
|
| 301 |
AutoEvalColumn.param_size.name: model_details.param_size,
|
| 302 |
AutoEvalColumn.model_type.name: model_details.model_type,
|
| 303 |
AutoEvalColumn.multilingual.name: model_details.multilingual,
|
|
|
|
|
|
|
| 304 |
}
|
| 305 |
|
| 306 |
for task in Tasks:
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import sys
|
| 3 |
from dataclasses import dataclass, make_dataclass
|
| 4 |
from enum import Enum
|
| 5 |
|
| 6 |
import numpy as np
|
| 7 |
|
| 8 |
+
from src.display.formatting import make_clickable_model, model_hyperlink
|
| 9 |
+
|
| 10 |
+
logging.basicConfig(
|
| 11 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 12 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
| 13 |
+
handlers=[logging.StreamHandler(sys.stdout)],
|
| 14 |
+
level=logging.INFO,
|
| 15 |
+
)
|
| 16 |
|
| 17 |
|
| 18 |
def fields(raw_class):
|
|
|
|
| 156 |
["param_size", ColumnContent, ColumnContent("# Parameters", "number", False, meta=True)],
|
| 157 |
["multilingual", ColumnContent, ColumnContent("Multilingual", "markdown", False, meta=True)],
|
| 158 |
["model_type", ColumnContent, ColumnContent("Model Type", "markdown", False, meta=True)],
|
| 159 |
+
["is_submission", ColumnContent, ColumnContent("Submission", "boolean", False, meta=True)],
|
| 160 |
+
["submission_date", ColumnContent, ColumnContent("Submission Date", "str", False, meta=True)],
|
| 161 |
# fmt: on
|
| 162 |
]
|
| 163 |
for task in Tasks:
|
|
|
|
| 210 |
average: float
|
| 211 |
aggregate_results: dict
|
| 212 |
precision: Precision = Precision.Unknown
|
| 213 |
+
# Submission metadata
|
| 214 |
+
is_submission: bool = False
|
| 215 |
+
param_size: float = -1
|
| 216 |
+
model_type: str = ModelType.UNKNOWN.value
|
| 217 |
+
multilingual: str = Multilingual.UNKNOWN.value
|
| 218 |
+
submission_date: str = ""
|
| 219 |
+
model_url: str = "https://huggingface.co/spaces/UD-Filipino/filbench-leaderboard"
|
| 220 |
|
| 221 |
@classmethod
|
| 222 |
+
def init_from_dict(self, data: dict, is_submission: bool = False) -> "EvalResult":
|
| 223 |
"""Populate results from a dictionary"""
|
| 224 |
|
| 225 |
+
# For model details, use user-provided metadata if it's a submission
|
| 226 |
+
config_key = "display_metadata" if is_submission else "config"
|
| 227 |
+
config = data.get(config_key)
|
| 228 |
precision = Precision.from_str(config.get("model_dtype"))
|
| 229 |
+
|
| 230 |
+
org_and_model = (
|
| 231 |
+
config.get("hf_id")
|
| 232 |
+
if is_submission
|
| 233 |
+
else config.get("model_name", config.get("model_args", None))
|
| 234 |
+
)
|
| 235 |
org_and_model = org_and_model.split("/", 1)
|
| 236 |
|
| 237 |
if len(org_and_model) == 1:
|
|
|
|
| 244 |
result_key = f"{org}_{model}_{precision.value.name}"
|
| 245 |
full_model = "/".join(org_and_model)
|
| 246 |
|
| 247 |
+
results = EvalResult.compute_scores_per_benchmark(data.get("results"))
|
| 248 |
+
aggregate_results = EvalResult.compute_aggregate_results(results)
|
| 249 |
+
filbench_score = np.mean(list(aggregate_results.values()))
|
| 250 |
+
|
| 251 |
# Format all results
|
| 252 |
+
if is_submission:
|
| 253 |
+
# Use pre-computed scores and check if they match our computed scores
|
| 254 |
+
category_scores = data.get("category_scores")
|
| 255 |
+
aggregate_results_precomputed = {
|
| 256 |
+
TaskCategory.CULTURAL_KNOWLEDGE.value: category_scores.get(
|
| 257 |
+
"CULTURAL_KNOWLEDGE"
|
| 258 |
+
),
|
| 259 |
+
TaskCategory.CLASSICAL_NLP.value: category_scores.get("CLASSICAL_NLP"),
|
| 260 |
+
TaskCategory.READING_COMPREHENSION.value: category_scores.get(
|
| 261 |
+
"READING_COMPREHENSION"
|
| 262 |
+
),
|
| 263 |
+
TaskCategory.TRANSLATION.value: category_scores.get("GENERATION"),
|
| 264 |
+
}
|
| 265 |
+
is_similar = EvalResult.compare_category_scores(
|
| 266 |
+
precomputed=aggregate_results_precomputed,
|
| 267 |
+
computed=aggregate_results,
|
| 268 |
+
)
|
| 269 |
+
if not is_similar:
|
| 270 |
+
logging.warning("Precomputed and computed category scores differ.")
|
| 271 |
+
logging.info("Will use computed scores for display.")
|
| 272 |
+
else:
|
| 273 |
+
logging.info("Precomputed and computed category scores are similar.")
|
| 274 |
+
aggregate_results = aggregate_results_precomputed
|
| 275 |
+
|
| 276 |
+
# Do the same comparison for FilBench score
|
| 277 |
+
filbench_score_precomputed = data.get("filbench_score")
|
| 278 |
+
is_filbench_score_similar = (
|
| 279 |
+
abs(filbench_score_precomputed - filbench_score) < 1e-2
|
| 280 |
+
)
|
| 281 |
+
if not is_filbench_score_similar:
|
| 282 |
+
logging.warning(
|
| 283 |
+
f"Precomputed filbench_score ({filbench_score_precomputed}) and"
|
| 284 |
+
f" official FilBench score ({filbench_score}) differ."
|
| 285 |
+
)
|
| 286 |
+
average = (
|
| 287 |
+
filbench_score_precomputed
|
| 288 |
+
if is_filbench_score_similar
|
| 289 |
+
else filbench_score
|
| 290 |
+
)
|
| 291 |
+
display_metadata = data.get("display_metadata")
|
| 292 |
+
|
| 293 |
+
return EvalResult(
|
| 294 |
+
eval_name=result_key,
|
| 295 |
+
full_model=full_model,
|
| 296 |
+
org=org,
|
| 297 |
+
model=model,
|
| 298 |
+
precision=precision,
|
| 299 |
+
results=results,
|
| 300 |
+
aggregate_results=aggregate_results,
|
| 301 |
+
average=average,
|
| 302 |
+
# Display Metadata
|
| 303 |
+
is_submission=True,
|
| 304 |
+
submission_date=display_metadata.get("submission_date", ""),
|
| 305 |
+
param_size=display_metadata.get("num_params", -1),
|
| 306 |
+
model_type=display_metadata.get("model_type", ModelType.UNKNOWN.value),
|
| 307 |
+
multilingual=display_metadata.get(
|
| 308 |
+
"multilinguality", Multilingual.UNKNOWN.value
|
| 309 |
+
),
|
| 310 |
+
model_url=display_metadata.get(
|
| 311 |
+
"url",
|
| 312 |
+
"https://huggingface.co/spaces/UD-Filipino/filbench-leaderboard",
|
| 313 |
+
),
|
| 314 |
+
)
|
| 315 |
+
else:
|
| 316 |
+
return self(
|
| 317 |
+
eval_name=result_key,
|
| 318 |
+
full_model=full_model,
|
| 319 |
+
org=org,
|
| 320 |
+
model=model,
|
| 321 |
+
precision=precision,
|
| 322 |
+
results=results,
|
| 323 |
+
aggregate_results=aggregate_results,
|
| 324 |
+
is_submission=False,
|
| 325 |
+
average=filbench_score,
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
@classmethod
|
| 329 |
+
def compute_scores_per_benchmark(cls, results: dict) -> dict[str, float]:
|
| 330 |
+
scores_per_benchmark = {}
|
| 331 |
for task in Tasks:
|
| 332 |
task = task.value
|
| 333 |
+
if results.get(task.benchmark):
|
| 334 |
+
score = results.get(task.benchmark).get(task.metric)
|
| 335 |
if "acc_" in task.metric:
|
| 336 |
score = score * 100.0
|
| 337 |
if "rougeL" in task.metric:
|
| 338 |
score = score * 100.0
|
| 339 |
+
scores_per_benchmark[task.benchmark] = score
|
| 340 |
else:
|
| 341 |
+
scores_per_benchmark[task.benchmark] = None
|
| 342 |
+
return scores_per_benchmark
|
| 343 |
+
|
| 344 |
+
@classmethod
|
| 345 |
+
def compute_aggregate_results(cls, results: dict) -> dict[str, float]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
aggregate_results = {}
|
| 347 |
for task_category in TaskCategory:
|
| 348 |
tasks = [
|
|
|
|
| 359 |
aggregate_results[task_category.value] = (
|
| 360 |
weighted_total_category / total_category
|
| 361 |
)
|
| 362 |
+
return aggregate_results
|
| 363 |
|
| 364 |
+
@classmethod
|
| 365 |
+
def compare_category_scores(
|
| 366 |
+
cls, precomputed: dict, computed: dict, threshold: float = 1e-2
|
| 367 |
+
) -> bool:
|
| 368 |
+
"""Compares precomputed and computed category scores."""
|
| 369 |
+
is_similar = True
|
| 370 |
+
for key, precomputed_value in precomputed.items():
|
| 371 |
+
computed_value = computed.get(key)
|
| 372 |
+
if precomputed_value is not None and computed_value is not None:
|
| 373 |
+
if abs(precomputed_value - computed_value) > threshold:
|
| 374 |
+
logging.warning(
|
| 375 |
+
f"Aggregate result for '{key}' differs"
|
| 376 |
+
f" (precomputed={precomputed_value}, computed={computed_value})"
|
| 377 |
+
)
|
| 378 |
+
is_similar = False
|
| 379 |
+
return is_similar
|
| 380 |
|
| 381 |
def to_dict(self):
|
| 382 |
"""Converts the EvalResult to a dict compatible with our dataframe display"""
|
| 383 |
|
| 384 |
+
if not self.is_submission:
|
| 385 |
+
model_details = model_registry.get(
|
| 386 |
+
self.full_model,
|
| 387 |
+
ModelSUT(
|
| 388 |
+
param_size=-1,
|
| 389 |
+
model_type=ModelType.UNKNOWN.value,
|
| 390 |
+
multilingual=Multilingual.UNKNOWN.value,
|
| 391 |
+
),
|
| 392 |
+
)
|
| 393 |
+
else:
|
| 394 |
+
model_details = ModelSUT(
|
| 395 |
+
param_size=self.param_size,
|
| 396 |
+
model_type=self.model_type,
|
| 397 |
+
multilingual=self.multilingual,
|
| 398 |
+
)
|
| 399 |
|
| 400 |
+
model_name_with_url = (
|
| 401 |
+
make_clickable_model(self.full_model)
|
| 402 |
+
if not self.is_submission
|
| 403 |
+
else f"📥 {model_hyperlink(self.model_url, self.full_model)}"
|
| 404 |
+
)
|
| 405 |
data_dict = {
|
| 406 |
"eval_name": self.eval_name, # not a column, just a save name
|
| 407 |
AutoEvalColumn.precision.name: self.precision.value.name,
|
| 408 |
+
AutoEvalColumn.model.name: model_name_with_url,
|
| 409 |
AutoEvalColumn.average.name: self.average,
|
| 410 |
AutoEvalColumn.param_size.name: model_details.param_size,
|
| 411 |
AutoEvalColumn.model_type.name: model_details.model_type,
|
| 412 |
AutoEvalColumn.multilingual.name: model_details.multilingual,
|
| 413 |
+
AutoEvalColumn.is_submission.name: self.is_submission,
|
| 414 |
+
AutoEvalColumn.submission_date.name: self.submission_date,
|
| 415 |
}
|
| 416 |
|
| 417 |
for task in Tasks:
|