Spaces:
Restarting
Restarting
Commit
·
814a536
1
Parent(s):
e0bc74c
Apply formatter
Browse files- app.py +60 -17
- pyproject.toml +4 -3
- src/about.py +4 -3
- src/display/formatting.py +3 -1
- src/display/utils.py +63 -17
- src/envs.py +3 -3
- src/leaderboard/read_evals.py +38 -21
- src/populate.py +13 -3
- src/submission/check_validity.py +46 -11
- src/submission/submit.py +17 -6
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
|
| 3 |
import pandas as pd
|
| 4 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
|
| 7 |
from src.about import (
|
|
@@ -20,11 +20,19 @@ from src.display.utils import (
|
|
| 20 |
EVAL_TYPES,
|
| 21 |
AutoEvalColumn,
|
| 22 |
ModelType,
|
| 23 |
-
|
| 24 |
WeightType,
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
)
|
| 27 |
-
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
|
| 28 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 29 |
from src.submission.submit import add_new_eval
|
| 30 |
|
|
@@ -32,24 +40,37 @@ from src.submission.submit import add_new_eval
|
|
| 32 |
def restart_space():
|
| 33 |
API.restart_space(repo_id=REPO_ID)
|
| 34 |
|
|
|
|
| 35 |
### Space initialisation
|
| 36 |
try:
|
| 37 |
print(EVAL_REQUESTS_PATH)
|
| 38 |
snapshot_download(
|
| 39 |
-
repo_id=QUEUE_REPO,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
)
|
| 41 |
except Exception:
|
| 42 |
restart_space()
|
| 43 |
try:
|
| 44 |
print(EVAL_RESULTS_PATH)
|
| 45 |
snapshot_download(
|
| 46 |
-
repo_id=RESULTS_REPO,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
except Exception:
|
| 49 |
restart_space()
|
| 50 |
|
| 51 |
|
| 52 |
-
LEADERBOARD_DF = get_leaderboard_df(
|
|
|
|
|
|
|
| 53 |
|
| 54 |
(
|
| 55 |
finished_eval_queue_df,
|
|
@@ -57,6 +78,7 @@ LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS,
|
|
| 57 |
pending_eval_queue_df,
|
| 58 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 59 |
|
|
|
|
| 60 |
def init_leaderboard(dataframe):
|
| 61 |
if dataframe is None or dataframe.empty:
|
| 62 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
@@ -64,15 +86,23 @@ def init_leaderboard(dataframe):
|
|
| 64 |
value=dataframe,
|
| 65 |
datatype=[c.type for c in fields(AutoEvalColumn)],
|
| 66 |
select_columns=SelectColumns(
|
| 67 |
-
default_selection=[
|
|
|
|
|
|
|
| 68 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
| 69 |
label="Select Columns to Display:",
|
| 70 |
),
|
| 71 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 72 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
| 73 |
filter_columns=[
|
| 74 |
-
ColumnFilter(
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
ColumnFilter(
|
| 77 |
AutoEvalColumn.params.name,
|
| 78 |
type="slider",
|
|
@@ -81,7 +111,10 @@ def init_leaderboard(dataframe):
|
|
| 81 |
label="Select the number of parameters (B)",
|
| 82 |
),
|
| 83 |
ColumnFilter(
|
| 84 |
-
AutoEvalColumn.still_on_hub.name,
|
|
|
|
|
|
|
|
|
|
| 85 |
),
|
| 86 |
],
|
| 87 |
bool_checkboxgroup_label="Hide models",
|
|
@@ -142,14 +175,20 @@ with demo:
|
|
| 142 |
row_count=5,
|
| 143 |
)
|
| 144 |
with gr.Row():
|
| 145 |
-
gr.Markdown(
|
|
|
|
|
|
|
| 146 |
|
| 147 |
with gr.Row():
|
| 148 |
with gr.Column():
|
| 149 |
model_name_textbox = gr.Textbox(label="Model name")
|
| 150 |
-
revision_name_textbox = gr.Textbox(
|
|
|
|
|
|
|
| 151 |
model_type = gr.Dropdown(
|
| 152 |
-
choices=[
|
|
|
|
|
|
|
| 153 |
label="Model type",
|
| 154 |
multiselect=False,
|
| 155 |
value=None,
|
|
@@ -158,7 +197,9 @@ with demo:
|
|
| 158 |
|
| 159 |
with gr.Column():
|
| 160 |
precision = gr.Dropdown(
|
| 161 |
-
choices=[
|
|
|
|
|
|
|
| 162 |
label="Precision",
|
| 163 |
multiselect=False,
|
| 164 |
value="float16",
|
|
@@ -171,7 +212,9 @@ with demo:
|
|
| 171 |
value="Original",
|
| 172 |
interactive=True,
|
| 173 |
)
|
| 174 |
-
base_model_name_textbox = gr.Textbox(
|
|
|
|
|
|
|
| 175 |
|
| 176 |
submit_button = gr.Button("Submit Eval")
|
| 177 |
submission_result = gr.Markdown()
|
|
@@ -201,4 +244,4 @@ with demo:
|
|
| 201 |
scheduler = BackgroundScheduler()
|
| 202 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 203 |
scheduler.start()
|
| 204 |
-
demo.queue(default_concurrency_limit=40).launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
from apscheduler.schedulers.background import BackgroundScheduler
|
| 4 |
+
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
|
| 5 |
from huggingface_hub import snapshot_download
|
| 6 |
|
| 7 |
from src.about import (
|
|
|
|
| 20 |
EVAL_TYPES,
|
| 21 |
AutoEvalColumn,
|
| 22 |
ModelType,
|
| 23 |
+
Precision,
|
| 24 |
WeightType,
|
| 25 |
+
fields,
|
| 26 |
+
)
|
| 27 |
+
from src.envs import (
|
| 28 |
+
API,
|
| 29 |
+
EVAL_REQUESTS_PATH,
|
| 30 |
+
EVAL_RESULTS_PATH,
|
| 31 |
+
QUEUE_REPO,
|
| 32 |
+
REPO_ID,
|
| 33 |
+
RESULTS_REPO,
|
| 34 |
+
TOKEN,
|
| 35 |
)
|
|
|
|
| 36 |
from src.populate import get_evaluation_queue_df, get_leaderboard_df
|
| 37 |
from src.submission.submit import add_new_eval
|
| 38 |
|
|
|
|
| 40 |
def restart_space():
|
| 41 |
API.restart_space(repo_id=REPO_ID)
|
| 42 |
|
| 43 |
+
|
| 44 |
### Space initialisation
|
| 45 |
try:
|
| 46 |
print(EVAL_REQUESTS_PATH)
|
| 47 |
snapshot_download(
|
| 48 |
+
repo_id=QUEUE_REPO,
|
| 49 |
+
local_dir=EVAL_REQUESTS_PATH,
|
| 50 |
+
repo_type="dataset",
|
| 51 |
+
tqdm_class=None,
|
| 52 |
+
etag_timeout=30,
|
| 53 |
+
token=TOKEN,
|
| 54 |
)
|
| 55 |
except Exception:
|
| 56 |
restart_space()
|
| 57 |
try:
|
| 58 |
print(EVAL_RESULTS_PATH)
|
| 59 |
snapshot_download(
|
| 60 |
+
repo_id=RESULTS_REPO,
|
| 61 |
+
local_dir=EVAL_RESULTS_PATH,
|
| 62 |
+
repo_type="dataset",
|
| 63 |
+
tqdm_class=None,
|
| 64 |
+
etag_timeout=30,
|
| 65 |
+
token=TOKEN,
|
| 66 |
)
|
| 67 |
except Exception:
|
| 68 |
restart_space()
|
| 69 |
|
| 70 |
|
| 71 |
+
LEADERBOARD_DF = get_leaderboard_df(
|
| 72 |
+
EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS
|
| 73 |
+
)
|
| 74 |
|
| 75 |
(
|
| 76 |
finished_eval_queue_df,
|
|
|
|
| 78 |
pending_eval_queue_df,
|
| 79 |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
| 80 |
|
| 81 |
+
|
| 82 |
def init_leaderboard(dataframe):
|
| 83 |
if dataframe is None or dataframe.empty:
|
| 84 |
raise ValueError("Leaderboard DataFrame is empty or None.")
|
|
|
|
| 86 |
value=dataframe,
|
| 87 |
datatype=[c.type for c in fields(AutoEvalColumn)],
|
| 88 |
select_columns=SelectColumns(
|
| 89 |
+
default_selection=[
|
| 90 |
+
c.name for c in fields(AutoEvalColumn) if c.displayed_by_default
|
| 91 |
+
],
|
| 92 |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
|
| 93 |
label="Select Columns to Display:",
|
| 94 |
),
|
| 95 |
search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name],
|
| 96 |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
|
| 97 |
filter_columns=[
|
| 98 |
+
ColumnFilter(
|
| 99 |
+
AutoEvalColumn.model_type.name,
|
| 100 |
+
type="checkboxgroup",
|
| 101 |
+
label="Model types",
|
| 102 |
+
),
|
| 103 |
+
ColumnFilter(
|
| 104 |
+
AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"
|
| 105 |
+
),
|
| 106 |
ColumnFilter(
|
| 107 |
AutoEvalColumn.params.name,
|
| 108 |
type="slider",
|
|
|
|
| 111 |
label="Select the number of parameters (B)",
|
| 112 |
),
|
| 113 |
ColumnFilter(
|
| 114 |
+
AutoEvalColumn.still_on_hub.name,
|
| 115 |
+
type="boolean",
|
| 116 |
+
label="Deleted/incomplete",
|
| 117 |
+
default=True,
|
| 118 |
),
|
| 119 |
],
|
| 120 |
bool_checkboxgroup_label="Hide models",
|
|
|
|
| 175 |
row_count=5,
|
| 176 |
)
|
| 177 |
with gr.Row():
|
| 178 |
+
gr.Markdown(
|
| 179 |
+
"# ✉️✨ Submit your model here!", elem_classes="markdown-text"
|
| 180 |
+
)
|
| 181 |
|
| 182 |
with gr.Row():
|
| 183 |
with gr.Column():
|
| 184 |
model_name_textbox = gr.Textbox(label="Model name")
|
| 185 |
+
revision_name_textbox = gr.Textbox(
|
| 186 |
+
label="Revision commit", placeholder="main"
|
| 187 |
+
)
|
| 188 |
model_type = gr.Dropdown(
|
| 189 |
+
choices=[
|
| 190 |
+
t.to_str(" : ") for t in ModelType if t != ModelType.Unknown
|
| 191 |
+
],
|
| 192 |
label="Model type",
|
| 193 |
multiselect=False,
|
| 194 |
value=None,
|
|
|
|
| 197 |
|
| 198 |
with gr.Column():
|
| 199 |
precision = gr.Dropdown(
|
| 200 |
+
choices=[
|
| 201 |
+
i.value.name for i in Precision if i != Precision.Unknown
|
| 202 |
+
],
|
| 203 |
label="Precision",
|
| 204 |
multiselect=False,
|
| 205 |
value="float16",
|
|
|
|
| 212 |
value="Original",
|
| 213 |
interactive=True,
|
| 214 |
)
|
| 215 |
+
base_model_name_textbox = gr.Textbox(
|
| 216 |
+
label="Base model (for delta or adapter weights)"
|
| 217 |
+
)
|
| 218 |
|
| 219 |
submit_button = gr.Button("Submit Eval")
|
| 220 |
submission_result = gr.Markdown()
|
|
|
|
| 244 |
scheduler = BackgroundScheduler()
|
| 245 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
| 246 |
scheduler.start()
|
| 247 |
+
demo.queue(default_concurrency_limit=40).launch()
|
pyproject.toml
CHANGED
|
@@ -2,12 +2,13 @@
|
|
| 2 |
# Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
|
| 3 |
select = ["E", "F"]
|
| 4 |
ignore = ["E501"] # line too long (black is taking care of this)
|
| 5 |
-
line-length =
|
| 6 |
fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
|
| 7 |
|
| 8 |
[tool.isort]
|
| 9 |
profile = "black"
|
| 10 |
-
line_length =
|
|
|
|
| 11 |
|
| 12 |
[tool.black]
|
| 13 |
-
line-length =
|
|
|
|
| 2 |
# Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
|
| 3 |
select = ["E", "F"]
|
| 4 |
ignore = ["E501"] # line too long (black is taking care of this)
|
| 5 |
+
line-length = 88
|
| 6 |
fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
|
| 7 |
|
| 8 |
[tool.isort]
|
| 9 |
profile = "black"
|
| 10 |
+
line_length = 88
|
| 11 |
+
multi_line_output = 9
|
| 12 |
|
| 13 |
[tool.black]
|
| 14 |
+
line-length = 88
|
src/about.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
| 3 |
|
|
|
|
| 4 |
@dataclass
|
| 5 |
class Task:
|
| 6 |
benchmark: str
|
|
@@ -11,13 +12,13 @@ class Task:
|
|
| 11 |
# Select your tasks here
|
| 12 |
# ---------------------------------------------------
|
| 13 |
class Tasks(Enum):
|
| 14 |
-
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 15 |
task0 = Task("anli_r1", "acc", "ANLI")
|
| 16 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
| 17 |
|
| 18 |
-
NUM_FEWSHOT = 0 # Change with your few shot
|
| 19 |
-
# ---------------------------------------------------
|
| 20 |
|
|
|
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
# Your leaderboard name
|
|
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from enum import Enum
|
| 3 |
|
| 4 |
+
|
| 5 |
@dataclass
|
| 6 |
class Task:
|
| 7 |
benchmark: str
|
|
|
|
| 12 |
# Select your tasks here
|
| 13 |
# ---------------------------------------------------
|
| 14 |
class Tasks(Enum):
|
| 15 |
+
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
| 16 |
task0 = Task("anli_r1", "acc", "ANLI")
|
| 17 |
task1 = Task("logiqa", "acc_norm", "LogiQA")
|
| 18 |
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
NUM_FEWSHOT = 0 # Change with your few shot
|
| 21 |
+
# ---------------------------------------------------
|
| 22 |
|
| 23 |
|
| 24 |
# Your leaderboard name
|
src/display/formatting.py
CHANGED
|
@@ -16,7 +16,9 @@ def styled_warning(warn):
|
|
| 16 |
|
| 17 |
|
| 18 |
def styled_message(message):
|
| 19 |
-
return
|
|
|
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
def has_no_nan_values(df, columns):
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
def styled_message(message):
|
| 19 |
+
return (
|
| 20 |
+
f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|
| 21 |
+
)
|
| 22 |
|
| 23 |
|
| 24 |
def has_no_nan_values(df, columns):
|
src/display/utils.py
CHANGED
|
@@ -5,8 +5,11 @@ import pandas as pd
|
|
| 5 |
|
| 6 |
from src.about import Tasks
|
| 7 |
|
|
|
|
| 8 |
def fields(raw_class):
|
| 9 |
-
return [
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
# These classes are for user facing column names,
|
|
@@ -20,29 +23,69 @@ class ColumnContent:
|
|
| 20 |
hidden: bool = False
|
| 21 |
never_hidden: bool = False
|
| 22 |
|
|
|
|
| 23 |
## Leaderboard columns
|
| 24 |
auto_eval_column_dict = []
|
| 25 |
# Init
|
| 26 |
-
auto_eval_column_dict.append(
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
for task in Tasks:
|
| 31 |
-
auto_eval_column_dict.append(
|
|
|
|
|
|
|
| 32 |
# Model information
|
| 33 |
-
auto_eval_column_dict.append(
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
auto_eval_column_dict.append(
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
auto_eval_column_dict.append(
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 44 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 45 |
|
|
|
|
| 46 |
## For the queue columns in the submission tab
|
| 47 |
@dataclass(frozen=True)
|
| 48 |
class EvalQueueColumn: # Queue column
|
|
@@ -53,12 +96,13 @@ class EvalQueueColumn: # Queue column
|
|
| 53 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
| 54 |
status = ColumnContent("status", "str", True)
|
| 55 |
|
|
|
|
| 56 |
## All the model information that we might need
|
| 57 |
@dataclass
|
| 58 |
class ModelDetails:
|
| 59 |
name: str
|
| 60 |
display_name: str = ""
|
| 61 |
-
symbol: str = ""
|
| 62 |
|
| 63 |
|
| 64 |
class ModelType(Enum):
|
|
@@ -83,11 +127,13 @@ class ModelType(Enum):
|
|
| 83 |
return ModelType.IFT
|
| 84 |
return ModelType.Unknown
|
| 85 |
|
|
|
|
| 86 |
class WeightType(Enum):
|
| 87 |
Adapter = ModelDetails("Adapter")
|
| 88 |
Original = ModelDetails("Original")
|
| 89 |
Delta = ModelDetails("Delta")
|
| 90 |
|
|
|
|
| 91 |
class Precision(Enum):
|
| 92 |
float16 = ModelDetails("float16")
|
| 93 |
bfloat16 = ModelDetails("bfloat16")
|
|
@@ -100,6 +146,7 @@ class Precision(Enum):
|
|
| 100 |
return Precision.bfloat16
|
| 101 |
return Precision.Unknown
|
| 102 |
|
|
|
|
| 103 |
# Column selection
|
| 104 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 105 |
|
|
@@ -107,4 +154,3 @@ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
|
| 107 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
| 108 |
|
| 109 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
| 110 |
-
|
|
|
|
| 5 |
|
| 6 |
from src.about import Tasks
|
| 7 |
|
| 8 |
+
|
| 9 |
def fields(raw_class):
|
| 10 |
+
return [
|
| 11 |
+
v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"
|
| 12 |
+
]
|
| 13 |
|
| 14 |
|
| 15 |
# These classes are for user facing column names,
|
|
|
|
| 23 |
hidden: bool = False
|
| 24 |
never_hidden: bool = False
|
| 25 |
|
| 26 |
+
|
| 27 |
## Leaderboard columns
|
| 28 |
auto_eval_column_dict = []
|
| 29 |
# Init
|
| 30 |
+
auto_eval_column_dict.append(
|
| 31 |
+
[
|
| 32 |
+
"model_type_symbol",
|
| 33 |
+
ColumnContent,
|
| 34 |
+
ColumnContent("T", "str", True, never_hidden=True),
|
| 35 |
+
]
|
| 36 |
+
)
|
| 37 |
+
auto_eval_column_dict.append(
|
| 38 |
+
[
|
| 39 |
+
"model",
|
| 40 |
+
ColumnContent,
|
| 41 |
+
ColumnContent("Model", "markdown", True, never_hidden=True),
|
| 42 |
+
]
|
| 43 |
+
)
|
| 44 |
+
# Scores
|
| 45 |
+
auto_eval_column_dict.append(
|
| 46 |
+
["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)]
|
| 47 |
+
)
|
| 48 |
for task in Tasks:
|
| 49 |
+
auto_eval_column_dict.append(
|
| 50 |
+
[task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)]
|
| 51 |
+
)
|
| 52 |
# Model information
|
| 53 |
+
auto_eval_column_dict.append(
|
| 54 |
+
["model_type", ColumnContent, ColumnContent("Type", "str", False)]
|
| 55 |
+
)
|
| 56 |
+
auto_eval_column_dict.append(
|
| 57 |
+
["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]
|
| 58 |
+
)
|
| 59 |
+
auto_eval_column_dict.append(
|
| 60 |
+
["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]
|
| 61 |
+
)
|
| 62 |
+
auto_eval_column_dict.append(
|
| 63 |
+
["precision", ColumnContent, ColumnContent("Precision", "str", False)]
|
| 64 |
+
)
|
| 65 |
+
auto_eval_column_dict.append(
|
| 66 |
+
["license", ColumnContent, ColumnContent("Hub License", "str", False)]
|
| 67 |
+
)
|
| 68 |
+
auto_eval_column_dict.append(
|
| 69 |
+
["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]
|
| 70 |
+
)
|
| 71 |
+
auto_eval_column_dict.append(
|
| 72 |
+
["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)]
|
| 73 |
+
)
|
| 74 |
+
auto_eval_column_dict.append(
|
| 75 |
+
[
|
| 76 |
+
"still_on_hub",
|
| 77 |
+
ColumnContent,
|
| 78 |
+
ColumnContent("Available on the hub", "bool", False),
|
| 79 |
+
]
|
| 80 |
+
)
|
| 81 |
+
auto_eval_column_dict.append(
|
| 82 |
+
["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]
|
| 83 |
+
)
|
| 84 |
|
| 85 |
# We use make dataclass to dynamically fill the scores from Tasks
|
| 86 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
| 87 |
|
| 88 |
+
|
| 89 |
## For the queue columns in the submission tab
|
| 90 |
@dataclass(frozen=True)
|
| 91 |
class EvalQueueColumn: # Queue column
|
|
|
|
| 96 |
weight_type = ColumnContent("weight_type", "str", "Original")
|
| 97 |
status = ColumnContent("status", "str", True)
|
| 98 |
|
| 99 |
+
|
| 100 |
## All the model information that we might need
|
| 101 |
@dataclass
|
| 102 |
class ModelDetails:
|
| 103 |
name: str
|
| 104 |
display_name: str = ""
|
| 105 |
+
symbol: str = "" # emoji
|
| 106 |
|
| 107 |
|
| 108 |
class ModelType(Enum):
|
|
|
|
| 127 |
return ModelType.IFT
|
| 128 |
return ModelType.Unknown
|
| 129 |
|
| 130 |
+
|
| 131 |
class WeightType(Enum):
|
| 132 |
Adapter = ModelDetails("Adapter")
|
| 133 |
Original = ModelDetails("Original")
|
| 134 |
Delta = ModelDetails("Delta")
|
| 135 |
|
| 136 |
+
|
| 137 |
class Precision(Enum):
|
| 138 |
float16 = ModelDetails("float16")
|
| 139 |
bfloat16 = ModelDetails("bfloat16")
|
|
|
|
| 146 |
return Precision.bfloat16
|
| 147 |
return Precision.Unknown
|
| 148 |
|
| 149 |
+
|
| 150 |
# Column selection
|
| 151 |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
| 152 |
|
|
|
|
| 154 |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
| 155 |
|
| 156 |
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|
|
|
src/envs.py
CHANGED
|
@@ -4,9 +4,9 @@ from huggingface_hub import HfApi
|
|
| 4 |
|
| 5 |
# Info to change for your repository
|
| 6 |
# ----------------------------------
|
| 7 |
-
TOKEN = os.environ.get("HF_TOKEN")
|
| 8 |
|
| 9 |
-
OWNER = "demo-leaderboard-backend"
|
| 10 |
# ----------------------------------
|
| 11 |
|
| 12 |
REPO_ID = f"{OWNER}/leaderboard"
|
|
@@ -14,7 +14,7 @@ QUEUE_REPO = f"{OWNER}/requests"
|
|
| 14 |
RESULTS_REPO = f"{OWNER}/results"
|
| 15 |
|
| 16 |
# If you setup a cache later, just change HF_HOME
|
| 17 |
-
CACHE_PATH=os.getenv("HF_HOME", ".")
|
| 18 |
|
| 19 |
# Local caches
|
| 20 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
|
|
|
| 4 |
|
| 5 |
# Info to change for your repository
|
| 6 |
# ----------------------------------
|
| 7 |
+
TOKEN = os.environ.get("HF_TOKEN") # A read/write token for your org
|
| 8 |
|
| 9 |
+
OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
| 10 |
# ----------------------------------
|
| 11 |
|
| 12 |
REPO_ID = f"{OWNER}/leaderboard"
|
|
|
|
| 14 |
RESULTS_REPO = f"{OWNER}/results"
|
| 15 |
|
| 16 |
# If you setup a cache later, just change HF_HOME
|
| 17 |
+
CACHE_PATH = os.getenv("HF_HOME", ".")
|
| 18 |
|
| 19 |
# Local caches
|
| 20 |
EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
|
src/leaderboard/read_evals.py
CHANGED
|
@@ -8,28 +8,28 @@ import dateutil
|
|
| 8 |
import numpy as np
|
| 9 |
|
| 10 |
from src.display.formatting import make_clickable_model
|
| 11 |
-
from src.display.utils import AutoEvalColumn, ModelType,
|
| 12 |
from src.submission.check_validity import is_model_on_hub
|
| 13 |
|
| 14 |
|
| 15 |
@dataclass
|
| 16 |
class EvalResult:
|
| 17 |
-
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
|
| 18 |
-
|
| 19 |
-
eval_name: str
|
| 20 |
-
full_model: str
|
| 21 |
-
org: str
|
| 22 |
model: str
|
| 23 |
-
revision: str
|
| 24 |
results: dict
|
| 25 |
precision: Precision = Precision.Unknown
|
| 26 |
-
model_type: ModelType = ModelType.Unknown
|
| 27 |
-
weight_type: WeightType = WeightType.Original
|
| 28 |
-
architecture: str = "Unknown"
|
| 29 |
license: str = "?"
|
| 30 |
likes: int = 0
|
| 31 |
num_params: int = 0
|
| 32 |
-
date: str = ""
|
| 33 |
still_on_hub: bool = False
|
| 34 |
|
| 35 |
@classmethod
|
|
@@ -58,7 +58,10 @@ class EvalResult:
|
|
| 58 |
full_model = "/".join(org_and_model)
|
| 59 |
|
| 60 |
still_on_hub, _, model_config = is_model_on_hub(
|
| 61 |
-
full_model,
|
|
|
|
|
|
|
|
|
|
| 62 |
)
|
| 63 |
architecture = "?"
|
| 64 |
if model_config is not None:
|
|
@@ -72,7 +75,13 @@ class EvalResult:
|
|
| 72 |
task = task.value
|
| 73 |
|
| 74 |
# We average all scores of a given metric (not all metrics are present in all files)
|
| 75 |
-
accs = np.array(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
| 77 |
continue
|
| 78 |
|
|
@@ -85,15 +94,17 @@ class EvalResult:
|
|
| 85 |
org=org,
|
| 86 |
model=model,
|
| 87 |
results=results,
|
| 88 |
-
precision=precision,
|
| 89 |
-
revision=
|
| 90 |
still_on_hub=still_on_hub,
|
| 91 |
-
architecture=architecture
|
| 92 |
)
|
| 93 |
|
| 94 |
def update_with_request_file(self, requests_path):
|
| 95 |
"""Finds the relevant request file for the current model and updates info with it"""
|
| 96 |
-
request_file = get_request_file_for_model(
|
|
|
|
|
|
|
| 97 |
|
| 98 |
try:
|
| 99 |
with open(request_file, "r") as f:
|
|
@@ -105,7 +116,9 @@ class EvalResult:
|
|
| 105 |
self.num_params = request.get("params", 0)
|
| 106 |
self.date = request.get("submitted_time", "")
|
| 107 |
except Exception:
|
| 108 |
-
print(
|
|
|
|
|
|
|
| 109 |
|
| 110 |
def to_dict(self):
|
| 111 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
@@ -165,7 +178,9 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
| 165 |
|
| 166 |
# Sort the files by date
|
| 167 |
try:
|
| 168 |
-
files.sort(
|
|
|
|
|
|
|
| 169 |
except dateutil.parser._parser.ParserError:
|
| 170 |
files = [files[-1]]
|
| 171 |
|
|
@@ -181,14 +196,16 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
| 181 |
# Store results of same eval together
|
| 182 |
eval_name = eval_result.eval_name
|
| 183 |
if eval_name in eval_results.keys():
|
| 184 |
-
eval_results[eval_name].results.update(
|
|
|
|
|
|
|
| 185 |
else:
|
| 186 |
eval_results[eval_name] = eval_result
|
| 187 |
|
| 188 |
results = []
|
| 189 |
for v in eval_results.values():
|
| 190 |
try:
|
| 191 |
-
v.to_dict()
|
| 192 |
results.append(v)
|
| 193 |
except KeyError: # not all eval values present
|
| 194 |
continue
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
|
| 10 |
from src.display.formatting import make_clickable_model
|
| 11 |
+
from src.display.utils import AutoEvalColumn, ModelType, Precision, Tasks, WeightType
|
| 12 |
from src.submission.check_validity import is_model_on_hub
|
| 13 |
|
| 14 |
|
| 15 |
@dataclass
|
| 16 |
class EvalResult:
|
| 17 |
+
"""Represents one full evaluation. Built from a combination of the result and request file for a given run."""
|
| 18 |
+
|
| 19 |
+
eval_name: str # org_model_precision (uid)
|
| 20 |
+
full_model: str # org/model (path on hub)
|
| 21 |
+
org: str
|
| 22 |
model: str
|
| 23 |
+
revision: str # commit hash, "" if main
|
| 24 |
results: dict
|
| 25 |
precision: Precision = Precision.Unknown
|
| 26 |
+
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
|
| 27 |
+
weight_type: WeightType = WeightType.Original # Original or Adapter
|
| 28 |
+
architecture: str = "Unknown"
|
| 29 |
license: str = "?"
|
| 30 |
likes: int = 0
|
| 31 |
num_params: int = 0
|
| 32 |
+
date: str = "" # submission date of request file
|
| 33 |
still_on_hub: bool = False
|
| 34 |
|
| 35 |
@classmethod
|
|
|
|
| 58 |
full_model = "/".join(org_and_model)
|
| 59 |
|
| 60 |
still_on_hub, _, model_config = is_model_on_hub(
|
| 61 |
+
full_model,
|
| 62 |
+
config.get("model_sha", "main"),
|
| 63 |
+
trust_remote_code=True,
|
| 64 |
+
test_tokenizer=False,
|
| 65 |
)
|
| 66 |
architecture = "?"
|
| 67 |
if model_config is not None:
|
|
|
|
| 75 |
task = task.value
|
| 76 |
|
| 77 |
# We average all scores of a given metric (not all metrics are present in all files)
|
| 78 |
+
accs = np.array(
|
| 79 |
+
[
|
| 80 |
+
v.get(task.metric, None)
|
| 81 |
+
for k, v in data["results"].items()
|
| 82 |
+
if task.benchmark == k
|
| 83 |
+
]
|
| 84 |
+
)
|
| 85 |
if accs.size == 0 or any([acc is None for acc in accs]):
|
| 86 |
continue
|
| 87 |
|
|
|
|
| 94 |
org=org,
|
| 95 |
model=model,
|
| 96 |
results=results,
|
| 97 |
+
precision=precision,
|
| 98 |
+
revision=config.get("model_sha", ""),
|
| 99 |
still_on_hub=still_on_hub,
|
| 100 |
+
architecture=architecture,
|
| 101 |
)
|
| 102 |
|
| 103 |
def update_with_request_file(self, requests_path):
|
| 104 |
"""Finds the relevant request file for the current model and updates info with it"""
|
| 105 |
+
request_file = get_request_file_for_model(
|
| 106 |
+
requests_path, self.full_model, self.precision.value.name
|
| 107 |
+
)
|
| 108 |
|
| 109 |
try:
|
| 110 |
with open(request_file, "r") as f:
|
|
|
|
| 116 |
self.num_params = request.get("params", 0)
|
| 117 |
self.date = request.get("submitted_time", "")
|
| 118 |
except Exception:
|
| 119 |
+
print(
|
| 120 |
+
f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}"
|
| 121 |
+
)
|
| 122 |
|
| 123 |
def to_dict(self):
|
| 124 |
"""Converts the Eval Result to a dict compatible with our dataframe display"""
|
|
|
|
| 178 |
|
| 179 |
# Sort the files by date
|
| 180 |
try:
|
| 181 |
+
files.sort(
|
| 182 |
+
key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]
|
| 183 |
+
)
|
| 184 |
except dateutil.parser._parser.ParserError:
|
| 185 |
files = [files[-1]]
|
| 186 |
|
|
|
|
| 196 |
# Store results of same eval together
|
| 197 |
eval_name = eval_result.eval_name
|
| 198 |
if eval_name in eval_results.keys():
|
| 199 |
+
eval_results[eval_name].results.update(
|
| 200 |
+
{k: v for k, v in eval_result.results.items() if v is not None}
|
| 201 |
+
)
|
| 202 |
else:
|
| 203 |
eval_results[eval_name] = eval_result
|
| 204 |
|
| 205 |
results = []
|
| 206 |
for v in eval_results.values():
|
| 207 |
try:
|
| 208 |
+
v.to_dict() # we test if the dict version is complete
|
| 209 |
results.append(v)
|
| 210 |
except KeyError: # not all eval values present
|
| 211 |
continue
|
src/populate.py
CHANGED
|
@@ -8,7 +8,9 @@ from src.display.utils import AutoEvalColumn, EvalQueueColumn
|
|
| 8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
| 9 |
|
| 10 |
|
| 11 |
-
def get_leaderboard_df(
|
|
|
|
|
|
|
| 12 |
"""Creates a dataframe from all the individual experiment results"""
|
| 13 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
| 14 |
all_data_json = [v.to_dict() for v in raw_data]
|
|
@@ -39,7 +41,11 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
| 39 |
all_evals.append(data)
|
| 40 |
elif ".md" not in entry:
|
| 41 |
# this is a folder
|
| 42 |
-
sub_entries = [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
for sub_entry in sub_entries:
|
| 44 |
file_path = os.path.join(save_path, entry, sub_entry)
|
| 45 |
with open(file_path) as fp:
|
|
@@ -51,7 +57,11 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
| 51 |
|
| 52 |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
| 53 |
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
| 54 |
-
finished_list = [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
| 56 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
| 57 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
|
|
|
| 8 |
from src.leaderboard.read_evals import get_raw_eval_results
|
| 9 |
|
| 10 |
|
| 11 |
+
def get_leaderboard_df(
|
| 12 |
+
results_path: str, requests_path: str, cols: list, benchmark_cols: list
|
| 13 |
+
) -> pd.DataFrame:
|
| 14 |
"""Creates a dataframe from all the individual experiment results"""
|
| 15 |
raw_data = get_raw_eval_results(results_path, requests_path)
|
| 16 |
all_data_json = [v.to_dict() for v in raw_data]
|
|
|
|
| 41 |
all_evals.append(data)
|
| 42 |
elif ".md" not in entry:
|
| 43 |
# this is a folder
|
| 44 |
+
sub_entries = [
|
| 45 |
+
e
|
| 46 |
+
for e in os.listdir(f"{save_path}/{entry}")
|
| 47 |
+
if os.path.isfile(e) and not e.startswith(".")
|
| 48 |
+
]
|
| 49 |
for sub_entry in sub_entries:
|
| 50 |
file_path = os.path.join(save_path, entry, sub_entry)
|
| 51 |
with open(file_path) as fp:
|
|
|
|
| 57 |
|
| 58 |
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
| 59 |
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
| 60 |
+
finished_list = [
|
| 61 |
+
e
|
| 62 |
+
for e in all_evals
|
| 63 |
+
if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"
|
| 64 |
+
]
|
| 65 |
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
|
| 66 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
| 67 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
src/submission/check_validity.py
CHANGED
|
@@ -10,12 +10,16 @@ from huggingface_hub.hf_api import ModelInfo
|
|
| 10 |
from transformers import AutoConfig
|
| 11 |
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
| 12 |
|
|
|
|
| 13 |
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
| 14 |
"""Checks if the model card and license exist and have been filled"""
|
| 15 |
try:
|
| 16 |
card = ModelCard.load(repo_id)
|
| 17 |
except huggingface_hub.utils.EntryNotFoundError:
|
| 18 |
-
return
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
# Enforce license metadata
|
| 21 |
if card.data.license is None:
|
|
@@ -31,28 +35,49 @@ def check_model_card(repo_id: str) -> tuple[bool, str]:
|
|
| 31 |
|
| 32 |
return True, ""
|
| 33 |
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
| 36 |
try:
|
| 37 |
-
config = AutoConfig.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
if test_tokenizer:
|
| 39 |
try:
|
| 40 |
-
tk = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
except ValueError as e:
|
| 42 |
return (
|
| 43 |
False,
|
| 44 |
f"uses a tokenizer which is not in a transformers release: {e}",
|
| 45 |
-
None
|
| 46 |
)
|
| 47 |
except Exception as e:
|
| 48 |
-
return (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
return True, None, config
|
| 50 |
|
| 51 |
except ValueError:
|
| 52 |
return (
|
| 53 |
False,
|
| 54 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
| 55 |
-
None
|
| 56 |
)
|
| 57 |
|
| 58 |
except Exception as e:
|
|
@@ -64,16 +89,22 @@ def get_model_size(model_info: ModelInfo, precision: str):
|
|
| 64 |
try:
|
| 65 |
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
| 66 |
except (AttributeError, TypeError):
|
| 67 |
-
return
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
size_factor =
|
|
|
|
|
|
|
| 70 |
model_size = size_factor * model_size
|
| 71 |
return model_size
|
| 72 |
|
|
|
|
| 73 |
def get_model_arch(model_info: ModelInfo):
|
| 74 |
"""Gets the model architecture from the configuration"""
|
| 75 |
return model_info.config.get("architectures", "Unknown")
|
| 76 |
|
|
|
|
| 77 |
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
| 78 |
"""Gather a list of already submitted models to avoid duplicates"""
|
| 79 |
depth = 1
|
|
@@ -88,12 +119,16 @@ def already_submitted_models(requested_models_dir: str) -> set[str]:
|
|
| 88 |
continue
|
| 89 |
with open(os.path.join(root, file), "r") as f:
|
| 90 |
info = json.load(f)
|
| 91 |
-
file_names.append(
|
|
|
|
|
|
|
| 92 |
|
| 93 |
# Select organisation
|
| 94 |
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
| 95 |
continue
|
| 96 |
organisation, _ = info["model"].split("/")
|
| 97 |
-
users_to_submission_dates[organisation].append(
|
|
|
|
|
|
|
| 98 |
|
| 99 |
return set(file_names), users_to_submission_dates
|
|
|
|
| 10 |
from transformers import AutoConfig
|
| 11 |
from transformers.models.auto.tokenization_auto import AutoTokenizer
|
| 12 |
|
| 13 |
+
|
| 14 |
def check_model_card(repo_id: str) -> tuple[bool, str]:
|
| 15 |
"""Checks if the model card and license exist and have been filled"""
|
| 16 |
try:
|
| 17 |
card = ModelCard.load(repo_id)
|
| 18 |
except huggingface_hub.utils.EntryNotFoundError:
|
| 19 |
+
return (
|
| 20 |
+
False,
|
| 21 |
+
"Please add a model card to your model to explain how you trained/fine-tuned it.",
|
| 22 |
+
)
|
| 23 |
|
| 24 |
# Enforce license metadata
|
| 25 |
if card.data.license is None:
|
|
|
|
| 35 |
|
| 36 |
return True, ""
|
| 37 |
|
| 38 |
+
|
| 39 |
+
def is_model_on_hub(
|
| 40 |
+
model_name: str,
|
| 41 |
+
revision: str,
|
| 42 |
+
token: str = None,
|
| 43 |
+
trust_remote_code=False,
|
| 44 |
+
test_tokenizer=False,
|
| 45 |
+
) -> tuple[bool, str]:
|
| 46 |
"""Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
|
| 47 |
try:
|
| 48 |
+
config = AutoConfig.from_pretrained(
|
| 49 |
+
model_name,
|
| 50 |
+
revision=revision,
|
| 51 |
+
trust_remote_code=trust_remote_code,
|
| 52 |
+
token=token,
|
| 53 |
+
)
|
| 54 |
if test_tokenizer:
|
| 55 |
try:
|
| 56 |
+
tk = AutoTokenizer.from_pretrained(
|
| 57 |
+
model_name,
|
| 58 |
+
revision=revision,
|
| 59 |
+
trust_remote_code=trust_remote_code,
|
| 60 |
+
token=token,
|
| 61 |
+
)
|
| 62 |
except ValueError as e:
|
| 63 |
return (
|
| 64 |
False,
|
| 65 |
f"uses a tokenizer which is not in a transformers release: {e}",
|
| 66 |
+
None,
|
| 67 |
)
|
| 68 |
except Exception as e:
|
| 69 |
+
return (
|
| 70 |
+
False,
|
| 71 |
+
"'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?",
|
| 72 |
+
None,
|
| 73 |
+
)
|
| 74 |
return True, None, config
|
| 75 |
|
| 76 |
except ValueError:
|
| 77 |
return (
|
| 78 |
False,
|
| 79 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
| 80 |
+
None,
|
| 81 |
)
|
| 82 |
|
| 83 |
except Exception as e:
|
|
|
|
| 89 |
try:
|
| 90 |
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
| 91 |
except (AttributeError, TypeError):
|
| 92 |
+
return (
|
| 93 |
+
0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
|
| 94 |
+
)
|
| 95 |
|
| 96 |
+
size_factor = (
|
| 97 |
+
8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
|
| 98 |
+
)
|
| 99 |
model_size = size_factor * model_size
|
| 100 |
return model_size
|
| 101 |
|
| 102 |
+
|
| 103 |
def get_model_arch(model_info: ModelInfo):
|
| 104 |
"""Gets the model architecture from the configuration"""
|
| 105 |
return model_info.config.get("architectures", "Unknown")
|
| 106 |
|
| 107 |
+
|
| 108 |
def already_submitted_models(requested_models_dir: str) -> set[str]:
|
| 109 |
"""Gather a list of already submitted models to avoid duplicates"""
|
| 110 |
depth = 1
|
|
|
|
| 119 |
continue
|
| 120 |
with open(os.path.join(root, file), "r") as f:
|
| 121 |
info = json.load(f)
|
| 122 |
+
file_names.append(
|
| 123 |
+
f"{info['model']}_{info['revision']}_{info['precision']}"
|
| 124 |
+
)
|
| 125 |
|
| 126 |
# Select organisation
|
| 127 |
if info["model"].count("/") == 0 or "submitted_time" not in info:
|
| 128 |
continue
|
| 129 |
organisation, _ = info["model"].split("/")
|
| 130 |
+
users_to_submission_dates[organisation].append(
|
| 131 |
+
info["submitted_time"]
|
| 132 |
+
)
|
| 133 |
|
| 134 |
return set(file_names), users_to_submission_dates
|
src/submission/submit.py
CHANGED
|
@@ -3,7 +3,7 @@ import os
|
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
|
| 5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
| 6 |
-
from src.envs import API, EVAL_REQUESTS_PATH,
|
| 7 |
from src.submission.check_validity import (
|
| 8 |
already_submitted_models,
|
| 9 |
check_model_card,
|
|
@@ -14,6 +14,7 @@ from src.submission.check_validity import (
|
|
| 14 |
REQUESTED_MODELS = None
|
| 15 |
USERS_TO_SUBMISSION_DATES = None
|
| 16 |
|
|
|
|
| 17 |
def add_new_eval(
|
| 18 |
model: str,
|
| 19 |
base_model: str,
|
|
@@ -25,7 +26,9 @@ def add_new_eval(
|
|
| 25 |
global REQUESTED_MODELS
|
| 26 |
global USERS_TO_SUBMISSION_DATES
|
| 27 |
if not REQUESTED_MODELS:
|
| 28 |
-
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(
|
|
|
|
|
|
|
| 29 |
|
| 30 |
user_name = ""
|
| 31 |
model_path = model
|
|
@@ -45,12 +48,16 @@ def add_new_eval(
|
|
| 45 |
|
| 46 |
# Is the model on the hub?
|
| 47 |
if weight_type in ["Delta", "Adapter"]:
|
| 48 |
-
base_model_on_hub, error, _ = is_model_on_hub(
|
|
|
|
|
|
|
| 49 |
if not base_model_on_hub:
|
| 50 |
return styled_error(f'Base model "{base_model}" {error}')
|
| 51 |
|
| 52 |
if not weight_type == "Adapter":
|
| 53 |
-
model_on_hub, error, _ = is_model_on_hub(
|
|
|
|
|
|
|
| 54 |
if not model_on_hub:
|
| 55 |
return styled_error(f'Model "{model}" {error}')
|
| 56 |
|
|
@@ -58,7 +65,9 @@ def add_new_eval(
|
|
| 58 |
try:
|
| 59 |
model_info = API.model_info(repo_id=model, revision=revision)
|
| 60 |
except Exception:
|
| 61 |
-
return styled_error(
|
|
|
|
|
|
|
| 62 |
|
| 63 |
model_size = get_model_size(model_info=model_info, precision=precision)
|
| 64 |
|
|
@@ -97,7 +106,9 @@ def add_new_eval(
|
|
| 97 |
print("Creating eval file")
|
| 98 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
| 99 |
os.makedirs(OUT_DIR, exist_ok=True)
|
| 100 |
-
out_path =
|
|
|
|
|
|
|
| 101 |
|
| 102 |
with open(out_path, "w") as f:
|
| 103 |
f.write(json.dumps(eval_entry))
|
|
|
|
| 3 |
from datetime import datetime, timezone
|
| 4 |
|
| 5 |
from src.display.formatting import styled_error, styled_message, styled_warning
|
| 6 |
+
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, TOKEN
|
| 7 |
from src.submission.check_validity import (
|
| 8 |
already_submitted_models,
|
| 9 |
check_model_card,
|
|
|
|
| 14 |
REQUESTED_MODELS = None
|
| 15 |
USERS_TO_SUBMISSION_DATES = None
|
| 16 |
|
| 17 |
+
|
| 18 |
def add_new_eval(
|
| 19 |
model: str,
|
| 20 |
base_model: str,
|
|
|
|
| 26 |
global REQUESTED_MODELS
|
| 27 |
global USERS_TO_SUBMISSION_DATES
|
| 28 |
if not REQUESTED_MODELS:
|
| 29 |
+
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(
|
| 30 |
+
EVAL_REQUESTS_PATH
|
| 31 |
+
)
|
| 32 |
|
| 33 |
user_name = ""
|
| 34 |
model_path = model
|
|
|
|
| 48 |
|
| 49 |
# Is the model on the hub?
|
| 50 |
if weight_type in ["Delta", "Adapter"]:
|
| 51 |
+
base_model_on_hub, error, _ = is_model_on_hub(
|
| 52 |
+
model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True
|
| 53 |
+
)
|
| 54 |
if not base_model_on_hub:
|
| 55 |
return styled_error(f'Base model "{base_model}" {error}')
|
| 56 |
|
| 57 |
if not weight_type == "Adapter":
|
| 58 |
+
model_on_hub, error, _ = is_model_on_hub(
|
| 59 |
+
model_name=model, revision=revision, token=TOKEN, test_tokenizer=True
|
| 60 |
+
)
|
| 61 |
if not model_on_hub:
|
| 62 |
return styled_error(f'Model "{model}" {error}')
|
| 63 |
|
|
|
|
| 65 |
try:
|
| 66 |
model_info = API.model_info(repo_id=model, revision=revision)
|
| 67 |
except Exception:
|
| 68 |
+
return styled_error(
|
| 69 |
+
"Could not get your model information. Please fill it up properly."
|
| 70 |
+
)
|
| 71 |
|
| 72 |
model_size = get_model_size(model_info=model_info, precision=precision)
|
| 73 |
|
|
|
|
| 106 |
print("Creating eval file")
|
| 107 |
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
| 108 |
os.makedirs(OUT_DIR, exist_ok=True)
|
| 109 |
+
out_path = (
|
| 110 |
+
f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
|
| 111 |
+
)
|
| 112 |
|
| 113 |
with open(out_path, "w") as f:
|
| 114 |
f.write(json.dumps(eval_entry))
|