File size: 10,466 Bytes
96c67b7
12f59da
15fe18d
96c67b7
12f59da
9346f1c
12f59da
4596a70
12f59da
96c67b7
814a536
12f59da
8b1f7a0
12f59da
54eae7e
d777fa4
12f59da
2a73469
96c67b7
 
 
 
 
 
 
12f59da
 
 
 
 
1b8a36b
a885f09
12f59da
 
96c67b7
2a73469
614ee1f
12f59da
 
 
 
 
96c67b7
 
 
 
 
 
 
 
 
 
 
 
12f59da
 
 
96c67b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f59da
 
d7a42ca
12f59da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7a42ca
12f59da
15fe18d
 
 
96c67b7
 
 
 
 
 
814a536
4103566
12f59da
 
4103566
814a536
12f59da
 
 
 
 
 
 
 
814a536
4103566
 
 
04447ea
d7a42ca
96c67b7
d7a42ca
04447ea
 
d7a42ca
04447ea
12f59da
 
 
 
 
 
4103566
 
 
beaaa9e
f6475aa
e2c374a
96c67b7
 
 
 
 
 
15fe18d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d4ad0a
15fe18d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2c374a
 
 
 
 
15fe18d
e2c374a
15fe18d
 
 
12f59da
01233b7
 
6829d60
96c67b7
 
 
6829d60
10f9b3c
8daa060
12f59da
 
 
96c67b7
 
 
12f59da
 
 
 
96c67b7
 
 
7e8ac0e
e2c374a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12f59da
8daa060
f7d1b51
15fe18d
 
 
f7d1b51
 
12f59da
 
71f25ab
f7d1b51
818f024
 
f7d1b51
12f59da
10f9b3c
d7a42ca
10f9b3c
814a536
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import logging
import os
import re
import sys

import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from datasets import load_dataset
from datasets.data_files import EmptyDatasetError
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
from huggingface_hub import HfApi

from src import about
from src.display.css_html_js import custom_css
from src.plots import plot_cost_efficiency, plot_parameter_efficiency
from src.schema import AutoEvalColumn, EvalResult, fields

logging.basicConfig(
    format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    handlers=[logging.StreamHandler(sys.stdout)],
    level=logging.INFO,
)

# 1. Initialization
_hf_token = os.environ.get("HF_TOKEN")
if not _hf_token:
    raise ValueError("HF_TOKEN not set!")
api = HfApi(token=_hf_token)


REPO_ID = "UD-Filipino/filbench-leaderboard"
REPO_RESULTS = "UD-Filipino/filbench-results"
SUBMISSION_RESULTS = "UD-Filipino/filbench-results-submission"


def restart_space():
    api.restart_space(repo_id=REPO_ID)


# 2. Load and populate leaderboard data
def get_results(
    source: str, aggregate: bool = False, submissions: str = None
) -> tuple[pd.DataFrame, list]:
    """Load results from a given source and return a DataFrame with the relevant columns.

    If `aggregate` is True, it returns the aggregated results.

    source (str): The source dataset to load results from.
    aggregate (bool): Whether to return aggregated results or not.
    submissions (str, optional): The submissions dataset to load results from.
    RETURNS (tuple[pd.DataFrame, list]): A tuple containing the DataFrame with results and a list of master columns.
    """
    results = load_dataset(source, split="train").to_pandas().to_dict(orient="records")
    raw_data = [EvalResult.init_from_dict(result) for result in results]

    if submissions:
        try:
            submission_results = (
                load_dataset(
                    submissions, split="train", download_mode="force_redownload"
                )
                .to_pandas()
                .to_dict(orient="records")
            )
        except EmptyDatasetError:
            logging.info("Empty dataset for submissions, skipping...")
            submission_results = []
        if len(submission_results) == 0:
            logging.info("No external submissions found!")
        else:
            logging.info(f"Found {len(submission_results)} submission/s!")

        raw_data += [
            EvalResult.init_from_dict(result, is_submission=True)
            for result in submission_results
        ]

    all_data_json = [v.to_dict() for v in raw_data]
    df = pd.DataFrame.from_records(all_data_json)
    df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
    df["Incomplete"] = ~df.isna().any(axis=1)
    master_columns = []
    for col in fields(AutoEvalColumn):
        if col.meta:
            master_columns.append(col.name)
        if aggregate:
            if col.aggregate:
                master_columns.append(col.name)
        else:
            if not col.aggregate:
                master_columns.append(col.name)

    cols = [
        c.name
        for c in fields(AutoEvalColumn)
        if not c.hidden and c.name in master_columns
    ]
    cols.append("Incomplete")
    df = df[cols].round(decimals=2)
    return df, master_columns


def init_leaderboard(
    source: str, aggregate: bool = False, submissions: str = None
) -> Leaderboard:
    df, master_columns = get_results(
        source=source, aggregate=aggregate, submissions=submissions
    )

    return Leaderboard(
        value=df,
        datatype=[c.type for c in fields(AutoEvalColumn) if c.name in master_columns],
        select_columns=SelectColumns(
            default_selection=[
                c.name
                for c in fields(AutoEvalColumn)
                if c.displayed_by_default and c.name in master_columns
            ],
            cant_deselect=[
                c.name
                for c in fields(AutoEvalColumn)
                if c.never_hidden and c.name in master_columns
            ],
            label="Select Columns to Display:",
        ),
        filter_columns=[
            # fmt: off
            ColumnFilter("Incomplete", type="boolean", label="Hide incomplete evaluations", default=True),
            ColumnFilter("Submission", type="boolean", label="Show only submitted results", default=False),
            # ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"),
            ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Model type"),
            ColumnFilter(AutoEvalColumn.multilingual.name, type="checkboxgroup", label="Multilinguality"),
            ColumnFilter(AutoEvalColumn.param_size.name, type="slider", min=0.01, max=150, label="Select the number of parameters (B)", default=[-1, 83]),
            # fmt: on
        ],
        search_columns=[AutoEvalColumn.model.name],
        hide_columns=[
            c.name
            for c in fields(AutoEvalColumn)
            if c.hidden and c.name in master_columns
        ],
        interactive=False,
    )


def get_clean_df() -> pd.DataFrame:
    df, _ = get_results(
        source=REPO_RESULTS, aggregate=False, submissions=SUBMISSION_RESULTS
    )
    df_agg, _ = get_results(
        source=REPO_RESULTS, aggregate=True, submissions=SUBMISSION_RESULTS
    )

    # Cleanup
    def extract_names(html_string):
        match = re.search(r"<a[^>]*>(.*?)</a>", html_string)
        if match:
            extracted_text = match.group(1)  # "some value"
        return extracted_text

    def remove_emojis(string):
        emoji_pattern = re.compile(
            "["
            "\U0001f600-\U0001f64f"  # emoticons
            "\U0001f300-\U0001f5ff"  # symbols & pictographs
            "\U0001f680-\U0001f6ff"  # transport & map symbols
            "\U0001f700-\U0001f77f"  # alchemical symbols
            "\U0001f780-\U0001f7ff"  # Geometric Shapes Extended
            "\U0001f800-\U0001f8ff"  # Supplemental Arrows-C
            "\U0001f900-\U0001f9ff"  # Supplemental Symbols and Pictographs
            "\U0001fa00-\U0001fa6f"  # Chess Symbols
            "\U0001fa70-\U0001faff"  # Symbols and Pictographs Extended-A
            "\U00002702-\U000027b0"  # Dingbats
            "\U000024c2-\U0001f251"
            "]+",
            flags=re.UNICODE,
        )
        return emoji_pattern.sub(r"", string).strip()

    df["Model"] = df["Model"].apply(extract_names)
    df = df.rename(columns={col: remove_emojis(col).strip() for col in df.columns})
    df["Multilingual"] = df["Multilingual"].apply(remove_emojis)
    df["Model Type"] = df["Model Type"].apply(remove_emojis)
    df = df.reset_index(drop=True)

    # Cleanup the aggregated dataset
    df_agg["Model"] = df_agg["Model"].apply(extract_names)
    df_agg = df_agg.rename(
        columns={col: remove_emojis(col).strip() for col in df_agg.columns}
    )
    df_agg = df_agg.reset_index(drop=True)
    df_agg = df_agg[
        [
            "Model",
            "Cultural Knowledge",
            "Classical NLP",
            "Reading Comprehension",
            "Generation",
        ]
    ]
    df_agg = df_agg.rename(
        columns={col: f"agg_{col}" for col in df_agg.columns if col != "Model"}
    )
    df_merge = df.merge(df_agg, on="Model")
    return df_merge


def download_results():
    df = get_clean_df()
    filepath = "filbench_results.csv"
    df.to_csv(filepath, index=False)
    return filepath


# 3. Actual setup of the HF Space
demo = gr.Blocks(css=custom_css)
with demo:
    with gr.Column(scale=6):
        num_models = len(
            get_results(REPO_RESULTS, aggregate=True, submissions=SUBMISSION_RESULTS)[0]
        )
        gr.Markdown(about.TOP_TEXT.format(str(num_models)))

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem(
            "πŸ… FilBench Leaderboard", elem_id="llm-benchmark-tab-table", id=0
        ):
            leaderboard = init_leaderboard(
                REPO_RESULTS, aggregate=True, submissions=SUBMISSION_RESULTS
            )

        with gr.TabItem(
            "πŸ” FilBench - Detailed", elem_id="llm-benchmark-tab-table", id=1
        ):
            leaderboard = init_leaderboard(
                REPO_RESULTS, aggregate=False, submissions=SUBMISSION_RESULTS
            )

        with gr.TabItem("πŸ“Š Analysis", id=2):
            df = get_clean_df()
            with gr.Row():
                with gr.Column():
                    gr.Markdown("## Parameter-Efficiency Plot")
                    plot_parameter_efficiency(df)
                    gr.Markdown(
                        "Model performance on FilBench with respect to their parameter size. "
                        "For mixture-of-experts models, we plot their full parameter count. "
                        "In general, we find that model size and performance are positively correlated."
                    )
                with gr.Column():
                    gr.Markdown("## Cost-Efficiency Plot")
                    plot_cost_efficiency(df)
                    gr.Markdown(
                        "Model performance on FilBench with respect to their per-token output cost ($/1M tokens). "
                        "We use the token-pricing as published in [OpenRouter](https://openrouter.ai/models). "
                        "For models not in OpenRouter, we either exlude them from the chart or use the cost of the base model it was finetuned from."
                    )

        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=3):
            gr.Markdown(about.LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

    with gr.Row():
        download_button = gr.DownloadButton("Download results (CSV)")
        download_button.click(download_results, outputs=download_button)

        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=about.CITATION_BUTTON_TEXT,
                label=about.CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )


scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()