Upload
Browse files- app.py +41 -0
- dinstilBert.py +19 -0
- label_encoder.pkl +3 -0
- model.pt +3 -0
- requirements.txt +5 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +14 -0
- vocab.txt +0 -0
app.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import joblib
|
4 |
+
from transformers import AutoTokenizer
|
5 |
+
from dinstilBert import MultiTaskBERT
|
6 |
+
|
7 |
+
model = MultiTaskBERT()
|
8 |
+
model.load_state_dict(torch.load("model.pt", map_location="cpu"))
|
9 |
+
model.eval()
|
10 |
+
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-multilingual-cased")
|
12 |
+
le = joblib.load("label_encoder.pkl")
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
model.to(device)
|
15 |
+
|
16 |
+
def predict(text):
|
17 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True).to(device)
|
18 |
+
with torch.no_grad():
|
19 |
+
sentiment_logits, lang_logits = model(inputs["input_ids"], inputs["attention_mask"])
|
20 |
+
pred_sentiment = sentiment_logits.argmax(dim=1).item()
|
21 |
+
pred_lang = lang_logits.argmax(dim=1).item()
|
22 |
+
|
23 |
+
sentiment_label = "positive" if pred_sentiment == 1 else "negative"
|
24 |
+
lang_label = le.inverse_transform([pred_lang])[0]
|
25 |
+
|
26 |
+
return sentiment_label, lang_label
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
interface = gr.Interface(
|
31 |
+
fn=predict,
|
32 |
+
inputs=gr.Textbox(label="Masukkan Teks Dalam Bahasa (Inggris/Belanda/Spanyol/Perancis)"),
|
33 |
+
outputs=[
|
34 |
+
gr.Textbox(label="Prediksi Sentiment"),
|
35 |
+
gr.Textbox(label="Prediksi Bahasa")
|
36 |
+
],
|
37 |
+
title="Multitask DistilBERT: Sentiment + Language",
|
38 |
+
description="Prediksi sentimen dan bahasa dari teks menggunakan model multitask DistilBERT."
|
39 |
+
)
|
40 |
+
|
41 |
+
interface.launch()
|
dinstilBert.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModel, AutoTokenizer
|
2 |
+
import torch.nn as nn
|
3 |
+
|
4 |
+
class MultiTaskBERT(nn.Module):
|
5 |
+
def __init__(self, num_lang_classes=4, num_sentiment_classes=2):
|
6 |
+
|
7 |
+
super().__init__()
|
8 |
+
self.bert = AutoModel.from_pretrained("distilbert-base-multilingual-cased")
|
9 |
+
self.dropout = nn.Dropout(0.3)
|
10 |
+
self.sentiment_head = nn.Linear(768, num_sentiment_classes)
|
11 |
+
self.lang_head = nn.Linear(768, num_lang_classes)
|
12 |
+
|
13 |
+
def forward(self, input_ids, attention_mask):
|
14 |
+
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
15 |
+
pooled_output = outputs.last_hidden_state[:, 0]
|
16 |
+
pooled_output = self.dropout(pooled_output)
|
17 |
+
sentiment_logits = self.sentiment_head(pooled_output)
|
18 |
+
lang_logits = self.lang_head(pooled_output)
|
19 |
+
return sentiment_logits, lang_logits
|
label_encoder.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d807aacf466425ba71f7fd36b79cca5de98feef504ff31f280a9a293c94ee71
|
3 |
+
size 493
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04990bd653e7fbefb47284f5cb46939dccc0922afef52d601ce879a202b8c745
|
3 |
+
size 538989962
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
gradio
|
4 |
+
scikit-learn
|
5 |
+
sentencepiece
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_lower_case": false,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 512,
|
7 |
+
"pad_token": "[PAD]",
|
8 |
+
"sep_token": "[SEP]",
|
9 |
+
"strip_accents": null,
|
10 |
+
"token": "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",
|
11 |
+
"tokenize_chinese_chars": true,
|
12 |
+
"tokenizer_class": "DistilBertTokenizer",
|
13 |
+
"unk_token": "[UNK]"
|
14 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|