Toymakerftw
commited on
Commit
·
41fda59
1
Parent(s):
0d0cec0
Test
Browse files- app.py +212 -178
- requirements.txt +3 -1
app.py
CHANGED
@@ -2,12 +2,15 @@ import logging
|
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import torch
|
|
|
5 |
from GoogleNews import GoogleNews
|
6 |
from transformers import pipeline
|
7 |
import yfinance as yf
|
8 |
import requests
|
9 |
from fuzzywuzzy import process
|
10 |
import statistics
|
|
|
|
|
11 |
|
12 |
# Set up logging
|
13 |
logging.basicConfig(
|
@@ -27,15 +30,94 @@ sentiment_analyzer = pipeline(
|
|
27 |
)
|
28 |
logging.info("Model initialized successfully")
|
29 |
|
30 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
EXCHANGE_SUFFIXES = {
|
32 |
"NSE": ".NS",
|
33 |
"BSE": ".BO",
|
34 |
"NYSE": "",
|
35 |
"NASDAQ": "",
|
36 |
-
# Add more exchanges as needed
|
37 |
}
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
def resolve_ticker_symbol(query: str, exchange: str = "NSE") -> str:
|
40 |
"""
|
41 |
Convert company names/partial symbols to valid Yahoo Finance tickers.
|
@@ -96,64 +178,57 @@ def analyze_article_sentiment(article):
|
|
96 |
return article
|
97 |
|
98 |
def fetch_yfinance_data(ticker):
|
99 |
-
"""Enhanced Yahoo Finance data fetching
|
100 |
try:
|
101 |
logging.info(f"Fetching Yahoo Finance data for: {ticker}")
|
102 |
stock = yf.Ticker(ticker)
|
103 |
|
104 |
-
# Get
|
105 |
-
|
106 |
-
history = stock.history(period="2d", interval="1d") # Get 2 days for change calculation
|
107 |
|
108 |
-
#
|
109 |
-
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
# Calculate price change using proper market session data
|
114 |
-
if not history.empty and len(history) > 1:
|
115 |
-
prev_close = history.iloc[-2]['Close']
|
116 |
-
current_close = history.iloc[-1]['Close']
|
117 |
-
change = current_close - prev_close
|
118 |
-
percent_change = (change / prev_close) * 100
|
119 |
-
else:
|
120 |
-
change = info.get('regularMarketChange', 'N/A')
|
121 |
-
percent_change = info.get('regularMarketChangePercent', 'N/A')
|
122 |
-
|
123 |
-
# Format market cap with proper suffixes
|
124 |
-
market_cap = info.get('marketCap')
|
125 |
-
if market_cap and market_cap != 'N/A':
|
126 |
-
market_cap = f"${_format_number(market_cap)}"
|
127 |
-
|
128 |
return {
|
129 |
-
|
130 |
-
'
|
131 |
-
'
|
132 |
-
'
|
133 |
-
|
134 |
-
|
135 |
-
'change': f"{change:.2f}" if isinstance(change, float) else change,
|
136 |
-
'percent_change': f"{percent_change:.2f}%" if isinstance(percent_change, float) else percent_change,
|
137 |
-
'day_range': f"{info.get('dayLow', 'N/A')} - {info.get('dayHigh', 'N/A')}",
|
138 |
-
|
139 |
-
# Market data
|
140 |
-
'market_cap': market_cap,
|
141 |
-
'volume': _format_number(info.get('volume', 'N/A')),
|
142 |
-
'pe_ratio': info.get('trailingPE', info.get('forwardPE', 'N/A')),
|
143 |
-
'52_week_range': f"{info.get('fiftyTwoWeekLow', 'N/A')} - {info.get('fiftyTwoWeekHigh', 'N/A')}",
|
144 |
-
|
145 |
-
# Additional fundamentals
|
146 |
-
'dividend_yield': f"{info.get('dividendYield', 0) * 100:.2f}%" if info.get('dividendYield') else 'N/A',
|
147 |
-
'beta': info.get('beta', 'N/A'),
|
148 |
-
|
149 |
-
# Market state
|
150 |
-
'market_state': info.get('marketState', 'CLOSED').title(),
|
151 |
-
'exchange': info.get('exchangeName', 'N/A')
|
152 |
}
|
153 |
|
154 |
except Exception as e:
|
155 |
logging.error(f"Error fetching Yahoo Finance data: {str(e)}")
|
156 |
-
return {"error":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
def _format_number(num):
|
159 |
"""Helper to format large numbers with suffixes"""
|
@@ -187,86 +262,60 @@ def convert_to_dataframe(analyzed_articles):
|
|
187 |
return df[["Sentiment", "Title", "Description", "Date"]]
|
188 |
|
189 |
def generate_stock_recommendation(articles, finance_data):
|
190 |
-
"""
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
# Sentiment scoring
|
198 |
-
sentiment_labels = [article['sentiment']['label'] for article in articles]
|
199 |
-
sentiment_scores = {
|
200 |
-
'positive': sentiment_labels.count('positive'),
|
201 |
-
'negative': sentiment_labels.count('negative'),
|
202 |
-
'neutral': sentiment_labels.count('neutral')
|
203 |
-
}
|
204 |
-
|
205 |
-
# Calculate sentiment ratio
|
206 |
-
total_articles = len(sentiment_labels)
|
207 |
-
sentiment_ratio = {
|
208 |
-
'positive': sentiment_scores['positive'] / total_articles * 100,
|
209 |
-
'negative': sentiment_scores['negative'] / total_articles * 100,
|
210 |
-
'neutral': sentiment_scores['neutral'] / total_articles * 100
|
211 |
-
}
|
212 |
|
213 |
-
#
|
214 |
-
|
|
|
215 |
'recommendation': 'HOLD',
|
216 |
'confidence': 'Medium',
|
217 |
-
'reasons': []
|
|
|
218 |
}
|
219 |
|
220 |
-
#
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
recommendation_text = f"""
|
257 |
-
Recommendation: {recommendation['recommendation']}
|
258 |
-
Confidence: {recommendation['confidence']}
|
259 |
-
|
260 |
-
Reasons:
|
261 |
-
{chr(10).join('- ' + reason for reason in recommendation['reasons'])}
|
262 |
-
|
263 |
-
Sentiment Breakdown:
|
264 |
-
- Positive Articles: {sentiment_ratio['positive']:.2f}%
|
265 |
-
- Neutral Articles: {sentiment_ratio['neutral']:.2f}%
|
266 |
-
- Negative Articles: {sentiment_ratio['negative']:.2f}%
|
267 |
-
"""
|
268 |
|
269 |
-
return
|
270 |
|
271 |
def analyze_asset_sentiment(asset_input):
|
272 |
logging.info(f"Starting sentiment analysis for asset: {asset_input}")
|
@@ -286,6 +335,9 @@ def analyze_asset_sentiment(asset_input):
|
|
286 |
# Fetch Yahoo Finance data
|
287 |
logging.info("Fetching Yahoo Finance data")
|
288 |
finance_data = fetch_yfinance_data(ticker)
|
|
|
|
|
|
|
289 |
|
290 |
# Generate stock recommendation
|
291 |
logging.info("Generating stock recommendation")
|
@@ -294,71 +346,53 @@ def analyze_asset_sentiment(asset_input):
|
|
294 |
logging.info("Sentiment analysis completed")
|
295 |
return (
|
296 |
convert_to_dataframe(analyzed_articles),
|
297 |
-
finance_data,
|
298 |
-
recommendation
|
|
|
299 |
)
|
300 |
except ValueError as e:
|
301 |
logging.error(f"Error resolving ticker: {str(e)}")
|
302 |
raise gr.Error(f"Invalid input: {str(e)}")
|
303 |
-
|
304 |
-
# Update Gradio interface
|
305 |
-
with gr.Blocks() as iface:
|
306 |
-
gr.Markdown("# Trading
|
307 |
-
|
308 |
-
"Enter the name of a trading asset, and I'll fetch recent articles, analyze their sentiment, and provide a stock recommendation!"
|
309 |
-
)
|
310 |
-
|
311 |
with gr.Row():
|
312 |
input_asset = gr.Textbox(
|
313 |
-
label="Asset Name
|
314 |
-
|
315 |
-
|
316 |
)
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
with gr.Column():
|
333 |
-
with gr.Blocks():
|
334 |
-
gr.Markdown("## Articles and Sentiment Analysis")
|
335 |
-
articles_output = gr.Dataframe(
|
336 |
-
headers=["Sentiment", "Title", "Description", "Date"],
|
337 |
-
datatype=["markdown", "html", "markdown", "markdown"],
|
338 |
-
wrap=False,
|
339 |
-
)
|
340 |
-
|
341 |
-
with gr.Row():
|
342 |
-
with gr.Column():
|
343 |
-
with gr.Blocks():
|
344 |
-
gr.Markdown("## Financial Data")
|
345 |
-
finance_output = gr.JSON()
|
346 |
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
analyze_button.click(
|
358 |
analyze_asset_sentiment,
|
359 |
inputs=[input_asset],
|
360 |
-
outputs=[articles_output,
|
361 |
)
|
362 |
|
363 |
-
logging.info("Launching Gradio interface")
|
364 |
iface.queue().launch()
|
|
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
+
import numpy as np
|
6 |
from GoogleNews import GoogleNews
|
7 |
from transformers import pipeline
|
8 |
import yfinance as yf
|
9 |
import requests
|
10 |
from fuzzywuzzy import process
|
11 |
import statistics
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
from datetime import datetime, timedelta
|
14 |
|
15 |
# Set up logging
|
16 |
logging.basicConfig(
|
|
|
30 |
)
|
31 |
logging.info("Model initialized successfully")
|
32 |
|
33 |
+
# Technical Analysis Parameters
|
34 |
+
TA_CONFIG = {
|
35 |
+
'rsi_window': 14,
|
36 |
+
'macd_fast': 12,
|
37 |
+
'macd_slow': 26,
|
38 |
+
'macd_signal': 9,
|
39 |
+
'bollinger_window': 20,
|
40 |
+
'sma_windows': [20, 50, 200],
|
41 |
+
'ema_windows': [12, 26],
|
42 |
+
'volatility_window': 30
|
43 |
+
}
|
44 |
+
|
45 |
EXCHANGE_SUFFIXES = {
|
46 |
"NSE": ".NS",
|
47 |
"BSE": ".BO",
|
48 |
"NYSE": "",
|
49 |
"NASDAQ": "",
|
|
|
50 |
}
|
51 |
|
52 |
+
def calculate_technical_indicators(history):
|
53 |
+
"""Calculate various technical indicators from historical price data"""
|
54 |
+
ta_results = {}
|
55 |
+
|
56 |
+
# RSI
|
57 |
+
delta = history['Close'].diff()
|
58 |
+
gain = delta.where(delta > 0, 0)
|
59 |
+
loss = -delta.where(delta < 0, 0)
|
60 |
+
|
61 |
+
avg_gain = gain.rolling(TA_CONFIG['rsi_window']).mean()
|
62 |
+
avg_loss = loss.rolling(TA_CONFIG['rsi_window']).mean()
|
63 |
+
rs = avg_gain / avg_loss
|
64 |
+
ta_results['rsi'] = 100 - (100 / (1 + rs)).iloc[-1]
|
65 |
+
|
66 |
+
# MACD
|
67 |
+
ema_fast = history['Close'].ewm(span=TA_CONFIG['macd_fast'], adjust=False).mean()
|
68 |
+
ema_slow = history['Close'].ewm(span=TA_CONFIG['macd_slow'], adjust=False).mean()
|
69 |
+
macd = ema_fast - ema_slow
|
70 |
+
signal = macd.ewm(span=TA_CONFIG['macd_signal'], adjust=False).mean()
|
71 |
+
ta_results['macd'] = macd.iloc[-1]
|
72 |
+
ta_results['macd_signal'] = signal.iloc[-1]
|
73 |
+
|
74 |
+
# Bollinger Bands
|
75 |
+
sma = history['Close'].rolling(TA_CONFIG['bollinger_window']).mean()
|
76 |
+
std = history['Close'].rolling(TA_CONFIG['bollinger_window']).std()
|
77 |
+
ta_results['bollinger_upper'] = (sma + 2 * std).iloc[-1]
|
78 |
+
ta_results['bollinger_lower'] = (sma - 2 * std).iloc[-1]
|
79 |
+
|
80 |
+
# Moving Averages
|
81 |
+
for window in TA_CONFIG['sma_windows']:
|
82 |
+
ta_results[f'sma_{window}'] = history['Close'].rolling(window).mean().iloc[-1]
|
83 |
+
for window in TA_CONFIG['ema_windows']:
|
84 |
+
ta_results[f'ema_{window}'] = history['Close'].ewm(span=window, adjust=False).mean().iloc[-1]
|
85 |
+
|
86 |
+
# Volatility
|
87 |
+
returns = history['Close'].pct_change().dropna()
|
88 |
+
ta_results['volatility_30d'] = returns.rolling(TA_CONFIG['volatility_window']).std().iloc[-1] * np.sqrt(252)
|
89 |
+
|
90 |
+
return ta_results
|
91 |
+
|
92 |
+
def generate_price_chart(history):
|
93 |
+
"""Generate interactive price chart with technical indicators"""
|
94 |
+
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 8), sharex=True)
|
95 |
+
|
96 |
+
# Price and Moving Averages
|
97 |
+
history['Close'].plot(ax=ax1, label='Price')
|
98 |
+
for window in TA_CONFIG['sma_windows']:
|
99 |
+
history['Close'].rolling(window).mean().plot(ax=ax1, label=f'SMA {window}')
|
100 |
+
ax1.set_title('Price and Moving Averages')
|
101 |
+
ax1.legend()
|
102 |
+
|
103 |
+
# RSI
|
104 |
+
delta = history['Close'].diff()
|
105 |
+
gain = delta.where(delta > 0, 0)
|
106 |
+
loss = -delta.where(delta < 0, 0)
|
107 |
+
avg_gain = gain.rolling(TA_CONFIG['rsi_window']).mean()
|
108 |
+
avg_loss = loss.rolling(TA_CONFIG['rsi_window']).mean()
|
109 |
+
rs = avg_gain / avg_loss
|
110 |
+
rsi = 100 - (100 / (1 + rs))
|
111 |
+
|
112 |
+
rsi.plot(ax=ax2, label='RSI')
|
113 |
+
ax2.axhline(70, color='red', linestyle='--')
|
114 |
+
ax2.axhline(30, color='green', linestyle='--')
|
115 |
+
ax2.set_title('Relative Strength Index (RSI)')
|
116 |
+
ax2.legend()
|
117 |
+
|
118 |
+
plt.tight_layout()
|
119 |
+
return fig
|
120 |
+
|
121 |
def resolve_ticker_symbol(query: str, exchange: str = "NSE") -> str:
|
122 |
"""
|
123 |
Convert company names/partial symbols to valid Yahoo Finance tickers.
|
|
|
178 |
return article
|
179 |
|
180 |
def fetch_yfinance_data(ticker):
|
181 |
+
"""Enhanced Yahoo Finance data fetching with technical analysis"""
|
182 |
try:
|
183 |
logging.info(f"Fetching Yahoo Finance data for: {ticker}")
|
184 |
stock = yf.Ticker(ticker)
|
185 |
|
186 |
+
# Get historical data for technical analysis
|
187 |
+
history = stock.history(period="1y", interval="1d")
|
|
|
188 |
|
189 |
+
# Calculate technical indicators
|
190 |
+
ta_data = calculate_technical_indicators(history) if not history.empty else {}
|
191 |
+
|
192 |
+
# Current price data
|
193 |
+
current_price = history['Close'].iloc[-1] if not history.empty else 0
|
194 |
+
prev_close = history['Close'].iloc[-2] if len(history) > 1 else 0
|
195 |
+
price_change = current_price - prev_close
|
196 |
+
percent_change = (price_change / prev_close) * 100 if prev_close != 0 else 0
|
197 |
+
|
198 |
+
# Generate price chart
|
199 |
+
chart = generate_price_chart(history[-120:]) # Last 120 days
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
return {
|
202 |
+
'current_price': current_price,
|
203 |
+
'price_change': price_change,
|
204 |
+
'percent_change': percent_change,
|
205 |
+
'chart': chart,
|
206 |
+
'technical_indicators': ta_data,
|
207 |
+
'fundamentals': stock.info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
}
|
209 |
|
210 |
except Exception as e:
|
211 |
logging.error(f"Error fetching Yahoo Finance data: {str(e)}")
|
212 |
+
return {"error": str(e)}
|
213 |
+
|
214 |
+
def time_weighted_sentiment(articles):
|
215 |
+
"""Apply time-based weighting to sentiment scores"""
|
216 |
+
now = datetime.now()
|
217 |
+
weighted_scores = []
|
218 |
+
|
219 |
+
for article in articles:
|
220 |
+
try:
|
221 |
+
article_date = datetime.strptime(article['date'], '%Y-%m-%d %H:%M:%S')
|
222 |
+
days_old = (now - article_date).days
|
223 |
+
weight = max(0, 1 - (days_old / 7)) # Linear decay over 7 days
|
224 |
+
except:
|
225 |
+
weight = 0.5 # Default weight if date parsing fails
|
226 |
+
|
227 |
+
sentiment = article['sentiment']['label']
|
228 |
+
score = 1 if sentiment == 'positive' else -1 if sentiment == 'negative' else 0
|
229 |
+
weighted_scores.append(score * weight)
|
230 |
+
|
231 |
+
return weighted_scores
|
232 |
|
233 |
def _format_number(num):
|
234 |
"""Helper to format large numbers with suffixes"""
|
|
|
262 |
return df[["Sentiment", "Title", "Description", "Date"]]
|
263 |
|
264 |
def generate_stock_recommendation(articles, finance_data):
|
265 |
+
"""Enhanced recommendation system with technical analysis"""
|
266 |
+
# Time-weighted sentiment analysis
|
267 |
+
sentiment_scores = time_weighted_sentiment(articles)
|
268 |
+
positive_score = sum(s for s in sentiment_scores if s > 0)
|
269 |
+
negative_score = abs(sum(s for s in sentiment_scores if s < 0))
|
270 |
+
total_score = positive_score - negative_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
+
# Technical indicators
|
273 |
+
ta = finance_data.get('technical_indicators', {})
|
274 |
+
rec = {
|
275 |
'recommendation': 'HOLD',
|
276 |
'confidence': 'Medium',
|
277 |
+
'reasons': [],
|
278 |
+
'risk_factors': []
|
279 |
}
|
280 |
|
281 |
+
# Sentiment-based factors
|
282 |
+
if total_score > 3:
|
283 |
+
rec['recommendation'] = 'BUY'
|
284 |
+
rec['reasons'].append("Strong positive sentiment trend")
|
285 |
+
elif total_score < -3:
|
286 |
+
rec['recommendation'] = 'SELL'
|
287 |
+
rec['reasons'].append("Significant negative sentiment")
|
288 |
+
|
289 |
+
# Technical analysis factors
|
290 |
+
if ta.get('rsi', 50) > 70:
|
291 |
+
rec['risk_factors'].append("RSI indicates overbought condition")
|
292 |
+
elif ta.get('rsi', 50) < 30:
|
293 |
+
rec['reasons'].append("RSI suggests oversold opportunity")
|
294 |
+
|
295 |
+
if ta.get('macd', 0) > ta.get('macd_signal', 0):
|
296 |
+
rec['reasons'].append("Bullish MACD crossover")
|
297 |
+
else:
|
298 |
+
rec['risk_factors'].append("Bearish MACD trend")
|
299 |
+
|
300 |
+
# Volatility analysis
|
301 |
+
if ta.get('volatility_30d', 0) > 0.4:
|
302 |
+
rec['risk_factors'].append("High volatility detected")
|
303 |
+
|
304 |
+
# Combine factors
|
305 |
+
if len(rec['reasons']) > len(rec['risk_factors']):
|
306 |
+
rec['confidence'] = 'High'
|
307 |
+
elif len(rec['risk_factors']) > 2:
|
308 |
+
rec['recommendation'] = 'SELL' if rec['recommendation'] == 'HOLD' else rec['recommendation']
|
309 |
+
rec['confidence'] = 'Low'
|
310 |
+
|
311 |
+
# Format output
|
312 |
+
output = f"Recommendation: {rec['recommendation']} ({rec['confidence']} Confidence)\n\n"
|
313 |
+
output += "Supporting Factors:\n" + "\n".join(f"- {r}" for r in rec['reasons']) + "\n\n"
|
314 |
+
output += "Risk Factors:\n" + "\n".join(f"- {r}" for r in rec['risk_factors']) + "\n\n"
|
315 |
+
output += f"Sentiment Score: {total_score:.2f}\n"
|
316 |
+
output += f"30-Day Volatility: {ta.get('volatility_30d', 0):.2%}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
317 |
|
318 |
+
return output
|
319 |
|
320 |
def analyze_asset_sentiment(asset_input):
|
321 |
logging.info(f"Starting sentiment analysis for asset: {asset_input}")
|
|
|
335 |
# Fetch Yahoo Finance data
|
336 |
logging.info("Fetching Yahoo Finance data")
|
337 |
finance_data = fetch_yfinance_data(ticker)
|
338 |
+
|
339 |
+
# Extract chart from finance data
|
340 |
+
price_chart = finance_data.pop('chart', None)
|
341 |
|
342 |
# Generate stock recommendation
|
343 |
logging.info("Generating stock recommendation")
|
|
|
346 |
logging.info("Sentiment analysis completed")
|
347 |
return (
|
348 |
convert_to_dataframe(analyzed_articles),
|
349 |
+
finance_data, # Financial data without chart
|
350 |
+
recommendation,
|
351 |
+
price_chart # Chart as separate output
|
352 |
)
|
353 |
except ValueError as e:
|
354 |
logging.error(f"Error resolving ticker: {str(e)}")
|
355 |
raise gr.Error(f"Invalid input: {str(e)}")
|
356 |
+
|
357 |
+
# Update Gradio interface with new components
|
358 |
+
with gr.Blocks(theme=gr.themes.Default()) as iface:
|
359 |
+
gr.Markdown("# Advanced Trading Analytics Suite")
|
360 |
+
|
|
|
|
|
|
|
361 |
with gr.Row():
|
362 |
input_asset = gr.Textbox(
|
363 |
+
label="Asset Name/Ticker",
|
364 |
+
placeholder="Enter stock name or symbol...",
|
365 |
+
max_lines=1
|
366 |
)
|
367 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
368 |
+
|
369 |
+
with gr.Tabs():
|
370 |
+
with gr.TabItem("Sentiment Analysis"):
|
371 |
+
gr.Markdown("## News Sentiment Analysis")
|
372 |
+
articles_output = gr.Dataframe(
|
373 |
+
headers=["Sentiment", "Title", "Description", "Date"],
|
374 |
+
datatype=["markdown", "html", "markdown", "markdown"]
|
375 |
+
)
|
376 |
+
|
377 |
+
with gr.TabItem("Technical Analysis"):
|
378 |
+
gr.Markdown("## Technical Indicators")
|
379 |
+
with gr.Row():
|
380 |
+
price_chart = gr.Plot(label="Price Analysis")
|
381 |
+
ta_json = gr.JSON(label="Technical Indicators")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
|
383 |
+
with gr.TabItem("Recommendation"):
|
384 |
+
gr.Markdown("## Trading Recommendation")
|
385 |
+
recommendation_output = gr.Textbox(
|
386 |
+
lines=8,
|
387 |
+
label="Analysis Summary",
|
388 |
+
interactive=False
|
389 |
+
)
|
390 |
+
|
391 |
+
analyze_btn.click(
|
|
|
|
|
392 |
analyze_asset_sentiment,
|
393 |
inputs=[input_asset],
|
394 |
+
outputs=[articles_output, ta_json, recommendation_output, price_chart]
|
395 |
)
|
396 |
|
397 |
+
logging.info("Launching enhanced Gradio interface")
|
398 |
iface.queue().launch()
|
requirements.txt
CHANGED
@@ -5,4 +5,6 @@ accelerate==0.33.0
|
|
5 |
sentencepiece==0.2.0
|
6 |
GoogleNews==1.6.14
|
7 |
yfinance
|
8 |
-
fuzzywuzzy
|
|
|
|
|
|
5 |
sentencepiece==0.2.0
|
6 |
GoogleNews==1.6.14
|
7 |
yfinance
|
8 |
+
fuzzywuzzy
|
9 |
+
matplotlib
|
10 |
+
numpy
|