import gradio as gr from datasets import load_dataset from transformers import CLIPTokenizerFast, CLIPProcessor, CLIPModel import torch from tqdm.auto import tqdm import numpy as np import time def CLIP_model(): global model, token, processor model_id = 'openai/clip-vit-base-patch32' model = CLIPModel.from_pretrained(model_id) token = CLIPTokenizerFast.from_pretrained(model_id) processor = CLIPProcessor.from_pretrained(model_id) def hello_name(name): return "Hello " + name def main(): CLIP_model() iface = gr.Interface(fn = hello_name, inputs = "text", outputs = "text") iface.launch(inline = False) if __name__ == "__main__": main()