Math / app.py
Tonic's picture
initial commit
31e2261 unverified
raw
history blame
7.67 kB
import spaces
import re
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torch
import json
LEAN4_DEFAULT_HEADER = (
"import Mathlib\n"
"import Aesop\n\n"
"set_option maxHeartbeats 0\n\n"
"open BigOperators Real Nat Topology Rat\n"
)
title = "# ๐Ÿ™‹๐Ÿปโ€โ™‚๏ธWelcome to ๐ŸŒŸTonic's ๐ŸŒ•๐Ÿ’‰๐Ÿ‘จ๐Ÿปโ€๐Ÿ”ฌMoonshot Math"
description = """
**Kimina-Prover-72B** is a state-of-the-art large formal reasoning model for Lean 4, achieving **80%+ pass rate** on the miniF2F benchmark, outperforming all prior works.\
Trained with Reinforcement Learning, 72B parameters, and a 32K token context window.\
- [Kimina-Prover-Preview GitHub](https://github.com/MoonshotAI/Kimina-Prover-Preview)\
- [Hugging Face: AI-MO/Kimina-Prover-72B](https://huggingface.co/AI-MO/Kimina-Prover-72B)\
- [Kimina Prover blog](https://huggingface.co/blog/AI-MO/kimina-prover)\
- [unimath dataset](https://huggingface.co/datasets/introspector/unimath)\
"""
citation = """> **Citation:**
> ```
> @article{kimina_prover_2025,
> title = {Kimina-Prover Preview: Towards Large Formal Reasoning Models with Reinforcement Learning},
> author = {Wang, Haiming and Unsal, Mert and ...},
> year = {2025},
> url = {http://arxiv.org/abs/2504.11354},
> }
> ```
"""
joinus ="""
### Join us:
๐ŸŒŸTeamTonic๐ŸŒŸ is always making cool demos! Join our active builder's ๐Ÿ› ๏ธcommunity ๐Ÿ‘ป
[![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/qdfnvSPcqP)
On ๐Ÿค—Huggingface: [MultiTransformer](https://huggingface.co/MultiTransformer)
On ๐ŸŒGithub: [Tonic-AI](https://github.com/tonic-ai) & contribute to๐ŸŒŸ [Build Tonic](https://git.tonic-ai.com/contribute)
๐Ÿค—Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant ๐Ÿค—
"""
# Build the initial system prompt
SYSTEM_PROMPT = "You are an expert in mathematics and Lean 4."
# Helper to build a Lean4 code block
def build_formal_block(formal_statement, informal_prefix=""):
return (
f"{LEAN4_DEFAULT_HEADER}\n"
f"{informal_prefix}\n"
f"{formal_statement}"
)
# Helper to extract the first Lean4 code block from text
def extract_lean4_code(text):
code_block = re.search(r"```lean4(.*?)(```|$)", text, re.DOTALL)
if code_block:
code = code_block.group(1)
lines = [line for line in code.split('\n') if line.strip()]
return '\n'.join(lines)
return text.strip()
# Example problems
unimath1 = """Goal:
X : UU
Y : UU
P : UU
xp : (X โ†’ P) โ†’ P
yp : (Y โ†’ P) โ†’ P
X0 : X ร— Y โ†’ P
x : X
============================
(Y โ†’ P)"""
unimath2 = """Goal:
R : ring M : module R
============================
(islinear (idfun M))"""
unimath3 = """Goal:
X : UU i : nat b : hProptoType (i < S i) x : Vector X (S i) r : i = i
============================
(pr1 lastelement = pr1 (i,, b))"""
unimath4 = """Goal:
X : dcpo CX : continuous_dcpo_struct X x : pr1hSet X y : pr1hSet X
============================
(x โŠ‘ y โ‰ƒ (โˆ€ i : approximating_family CX x, approximating_family CX x i โŠ‘ y))"""
additional_info_prompt = "/-Explain using mathematics-/\n"
examples = [
[unimath1, additional_info_prompt, 2500],
[unimath2, additional_info_prompt, 2500],
[unimath3, additional_info_prompt, 2500],
[unimath4, additional_info_prompt, 2500]
]
model_name = "AI-MO/Kimina-Prover-72B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
# Set generation config
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
model.generation_config.do_sample = True
model.generation_config.temperature = 0.6
model.generation_config.top_p = 0.95
# Initialize chat history with system prompt
def init_chat(formal_statement, informal_prefix):
user_prompt = (
"Think about and solve the following problem step by step in Lean 4.\n"
"# Problem: Provide a formal proof for the following statement.\n"
f"# Formal statement:\n```lean4\n{build_formal_block(formal_statement, informal_prefix)}\n```\n"
)
return [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": user_prompt}
]
# Gradio chat handler
@spaces.GPU
def chat_handler(user_message, informal_prefix, max_tokens, chat_history):
# If chat_history is empty, initialize with system and first user message
if not chat_history or len(chat_history) < 2:
chat_history = init_chat(user_message, informal_prefix)
display_history = [("user", user_message)]
else:
# Append new user message
chat_history.append({"role": "user", "content": user_message})
display_history = []
for msg in chat_history:
if msg["role"] == "user":
display_history.append(("user", msg["content"]))
elif msg["role"] == "assistant":
display_history.append(("assistant", msg["content"]))
# Format prompt using chat template
prompt = tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True)
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(model.device)
attention_mask = torch.ones_like(input_ids)
outputs = model.generate(
input_ids,
attention_mask=attention_mask,
max_length=max_tokens + input_ids.shape[1],
pad_token_id=model.generation_config.pad_token_id,
temperature=model.generation_config.temperature,
top_p=model.generation_config.top_p,
)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the new assistant message (after the prompt)
new_response = result[len(prompt):].strip()
# Add assistant message to chat history
chat_history.append({"role": "assistant", "content": new_response})
display_history.append(("assistant", new_response))
# Extract Lean4 code
code = extract_lean4_code(new_response)
# Prepare output
output_data = {
"model_input": prompt,
"model_output": result,
"lean4_code": code,
"chat_history": chat_history
}
return display_history, json.dumps(output_data, indent=2), code, chat_history
def main():
with gr.Blocks() as demo:
# Title and Model Description
gr.Markdown("""# ๐Ÿ™‹๐Ÿปโ€โ™‚๏ธWelcome to ๐ŸŒŸTonic's ๐ŸŒ•๐Ÿ’‰๐Ÿ‘จ๐Ÿปโ€๐Ÿ”ฌMoonshot Math""")
gr.Markdown(description)
gr.Markdown(joinus)
with gr.Row():
with gr.Column():
chat = gr.Chatbot(label="Chat History")
user_input = gr.Textbox(label="Your message or formal statement", lines=4)
informal = gr.Textbox(value=additional_info_prompt, label="Optional informal prefix")
max_tokens = gr.Slider(minimum=150, maximum=4096, value=2500, label="Max Tokens")
submit = gr.Button("Send")
with gr.Column():
json_out = gr.JSON(label="Full Output")
code_out = gr.Code(label="Extracted Lean4 Code", language="lean4")
state = gr.State([])
# On submit, call chat_handler
submit.click(chat_handler, [user_input, informal, max_tokens, state], [chat, json_out, code_out, state])
gr.Markdown(citation)
demo.launch()
if __name__ == "__main__":
main()