Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import AutoModel, AutoTokenizer, AutoConfig | |
import os | |
import base64 | |
import spaces | |
import io | |
from PIL import Image | |
import numpy as np | |
import yaml | |
from pathlib import Path | |
from globe import title, description, modelinfor, joinus, howto | |
import uuid | |
import tempfile | |
import time | |
import shutil | |
import cv2 | |
import re | |
import warnings | |
# Check transformers version for compatibility | |
try: | |
import transformers | |
transformers_version = transformers.__version__ | |
print(f"Transformers version: {transformers_version}") | |
# Check if we need to use legacy cache handling | |
if transformers_version.startswith(('4.4', '4.5', '4.6')): | |
USE_LEGACY_CACHE = True | |
else: | |
USE_LEGACY_CACHE = False | |
except: | |
USE_LEGACY_CACHE = False | |
# Try to import spaces module for ZeroGPU compatibility | |
try: | |
import spaces | |
SPACES_AVAILABLE = True | |
except ImportError: | |
SPACES_AVAILABLE = False | |
# Create a dummy decorator for local development | |
def dummy_gpu_decorator(func): | |
return func | |
spaces = type('spaces', (), {'GPU': dummy_gpu_decorator})() | |
# Suppress specific warnings that are known issues with GOT-OCR | |
warnings.filterwarnings("ignore", message="The attention mask and the pad token id were not set") | |
warnings.filterwarnings("ignore", message="Setting `pad_token_id` to `eos_token_id`") | |
warnings.filterwarnings("ignore", message="The attention mask is not set and cannot be inferred") | |
warnings.filterwarnings("ignore", message="The `seen_tokens` attribute is deprecated") | |
def global_cache_clear(): | |
"""Global cache clearing function to prevent DynamicCache issues""" | |
try: | |
# Clear torch cache | |
import torch | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
# Clear transformers cache | |
try: | |
from transformers.cache_utils import clear_cache | |
clear_cache() | |
except: | |
pass | |
# Clear any DynamicCache instances | |
try: | |
from transformers.cache_utils import DynamicCache | |
if hasattr(DynamicCache, 'clear_all'): | |
DynamicCache.clear_all() | |
except: | |
pass | |
# Force garbage collection | |
import gc | |
gc.collect() | |
except Exception as e: | |
print(f"Global cache clear warning: {str(e)}") | |
pass | |
class ModelCacheManager: | |
""" | |
Manages model cache to prevent DynamicCache errors | |
""" | |
def __init__(self, model): | |
self.model = model | |
self._clear_all_caches() | |
def _clear_all_caches(self): | |
"""Clear all possible caches including DynamicCache""" | |
# Use global cache clearing first | |
global_cache_clear() | |
# Clear model cache | |
if hasattr(self.model, 'clear_cache'): | |
try: | |
self.model.clear_cache() | |
except: | |
pass | |
if hasattr(self.model, '_clear_cache'): | |
try: | |
self.model._clear_cache() | |
except: | |
pass | |
# Clear any generation cache | |
try: | |
if hasattr(self.model, 'generation_config'): | |
if hasattr(self.model.generation_config, 'clear_cache'): | |
self.model.generation_config.clear_cache() | |
except: | |
pass | |
# Clear any cache attributes that might cause DynamicCache issues | |
cache_attrs = ['cache', '_cache', 'past_key_values', 'use_cache', '_past_key_values'] | |
for attr in cache_attrs: | |
if hasattr(self.model, attr): | |
try: | |
delattr(self.model, attr) | |
except: | |
pass | |
# Clear transformers cache based on version | |
try: | |
if USE_LEGACY_CACHE: | |
# Legacy cache clearing for older transformers versions | |
from transformers import GenerationConfig | |
if hasattr(GenerationConfig, 'clear_cache'): | |
GenerationConfig.clear_cache() | |
else: | |
# New cache clearing for recent transformers versions | |
try: | |
from transformers.cache_utils import clear_cache | |
clear_cache() | |
except: | |
pass | |
# Also try the old method as fallback | |
try: | |
from transformers import GenerationConfig | |
if hasattr(GenerationConfig, 'clear_cache'): | |
GenerationConfig.clear_cache() | |
except: | |
pass | |
# Try to clear DynamicCache specifically | |
try: | |
from transformers.cache_utils import DynamicCache | |
# Clear any global DynamicCache instances | |
if hasattr(DynamicCache, 'clear_all'): | |
DynamicCache.clear_all() | |
except: | |
pass | |
except: | |
pass | |
# Clear torch cache | |
try: | |
import torch | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
except: | |
pass | |
# Force garbage collection | |
try: | |
import gc | |
gc.collect() | |
except: | |
pass | |
def safe_call(self, method_name, *args, **kwargs): | |
"""Safely call model methods with cache management""" | |
try: | |
# First attempt | |
method = getattr(self.model, method_name) | |
return method(*args, **kwargs) | |
except AttributeError as e: | |
if "get_max_length" in str(e): | |
# Clear cache and retry | |
self._clear_all_caches() | |
try: | |
return method(*args, **kwargs) | |
except: | |
# Try without any cache-related parameters | |
kwargs_copy = kwargs.copy() | |
# Remove any cache-related parameters that might cause issues | |
for key in list(kwargs_copy.keys()): | |
if 'cache' in key.lower(): | |
del kwargs_copy[key] | |
return method(*args, **kwargs_copy) | |
else: | |
raise e | |
def direct_call(self, method_name, *args, **kwargs): | |
"""Direct call bypassing all cache mechanisms""" | |
try: | |
# Clear all caches first | |
self._clear_all_caches() | |
# Remove any cache-related parameters | |
kwargs_copy = kwargs.copy() | |
for key in list(kwargs_copy.keys()): | |
if 'cache' in key.lower(): | |
del kwargs_copy[key] | |
# Make the call | |
method = getattr(self.model, method_name) | |
return method(*args, **kwargs_copy) | |
except Exception as e: | |
# If still failing, try the original safe_call as last resort | |
return self.safe_call(method_name, *args, **kwargs) | |
def legacy_call(self, method_name, *args, **kwargs): | |
"""Legacy call method for older transformers versions""" | |
try: | |
# For legacy versions, we need to handle cache differently | |
kwargs_copy = kwargs.copy() | |
# Remove any cache-related parameters | |
for key in list(kwargs_copy.keys()): | |
if 'cache' in key.lower(): | |
del kwargs_copy[key] | |
# Clear caches | |
self._clear_all_caches() | |
# Make the call | |
method = getattr(self.model, method_name) | |
return method(*args, **kwargs_copy) | |
except Exception as e: | |
# Fallback to direct call | |
return self.direct_call(method_name, *args, **kwargs) | |
def dynamic_cache_safe_call(self, method_name, *args, **kwargs): | |
"""Specialized method to handle DynamicCache errors""" | |
try: | |
# First, try to completely disable cache mechanisms | |
original_attrs = {} | |
# Store and remove cache-related attributes | |
cache_attrs = ['cache', '_cache', 'past_key_values', 'use_cache', '_past_key_values'] | |
for attr in cache_attrs: | |
if hasattr(self.model, attr): | |
original_attrs[attr] = getattr(self.model, attr) | |
try: | |
delattr(self.model, attr) | |
except: | |
pass | |
# Clear all caches | |
self._clear_all_caches() | |
# Create minimal kwargs | |
minimal_kwargs = {} | |
essential_params = ['ocr_type', 'render', 'save_render_file', 'ocr_box', 'ocr_color'] | |
for key, value in kwargs.items(): | |
if key in essential_params and 'cache' not in key.lower(): | |
minimal_kwargs[key] = value | |
# Make the call | |
method = getattr(self.model, method_name) | |
result = method(*args, **minimal_kwargs) | |
# Restore original attributes | |
for attr, value in original_attrs.items(): | |
try: | |
setattr(self.model, attr, value) | |
except: | |
pass | |
return result | |
except AttributeError as e: | |
if "get_max_length" in str(e) and "DynamicCache" in str(e): | |
# If DynamicCache error still occurs, try with no parameters | |
try: | |
method = getattr(self.model, method_name) | |
return method(*args) | |
except Exception as final_error: | |
raise Exception(f"DynamicCache safe call failed: {str(final_error)}") | |
else: | |
raise e | |
except Exception as e: | |
raise e | |
def initialize_model_safely(): | |
""" | |
Safely initialize the GOT-OCR model with proper error handling for ZeroGPU | |
""" | |
model_name = 'ucaslcl/GOT-OCR2_0' | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
try: | |
# Initialize tokenizer with proper settings | |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
# Set pad token properly | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
# Initialize model with proper settings to avoid warnings | |
model = AutoModel.from_pretrained( | |
'ucaslcl/GOT-OCR2_0', | |
trust_remote_code=True, | |
low_cpu_mem_usage=True, | |
device_map=device, | |
use_safetensors=True, | |
pad_token_id=tokenizer.eos_token_id, | |
torch_dtype=torch.float16 if device == 'cuda' else torch.float32 | |
) | |
model = model.eval().to(device) | |
model.config.pad_token_id = tokenizer.eos_token_id | |
# Ensure the model has proper tokenizer settings | |
if hasattr(model, 'config'): | |
model.config.pad_token_id = tokenizer.eos_token_id | |
model.config.eos_token_id = tokenizer.eos_token_id | |
# Create cache manager | |
cache_manager = ModelCacheManager(model) | |
return model, tokenizer, cache_manager | |
except Exception as e: | |
print(f"Error initializing model: {str(e)}") | |
# Fallback initialization | |
try: | |
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
model = AutoModel.from_pretrained( | |
'ucaslcl/GOT-OCR2_0', | |
trust_remote_code=True, | |
low_cpu_mem_usage=True, | |
device_map=device, | |
use_safetensors=True | |
) | |
model = model.eval().to(device) | |
# Create cache manager for fallback model | |
cache_manager = ModelCacheManager(model) | |
return model, tokenizer, cache_manager | |
except Exception as fallback_error: | |
raise Exception(f"Failed to initialize model: {str(e)}. Fallback also failed: {str(fallback_error)}") | |
# Initialize model, tokenizer, and cache manager | |
model, tokenizer, cache_manager = initialize_model_safely() | |
UPLOAD_FOLDER = "./uploads" | |
RESULTS_FOLDER = "./results" | |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
if not os.path.exists(folder): | |
os.makedirs(folder) | |
def image_to_base64(image): | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
return base64.b64encode(buffered.getvalue()).decode() | |
def direct_model_call(model, method_name, *args, **kwargs): | |
""" | |
Direct model call without any cache-related parameters | |
""" | |
# Create a clean kwargs dict without any cache-related parameters | |
clean_kwargs = {} | |
for key, value in kwargs.items(): | |
if 'cache' not in key.lower(): | |
clean_kwargs[key] = value | |
# Get the method and call it directly | |
method = getattr(model, method_name) | |
return method(*args, **clean_kwargs) | |
def safe_model_call_with_dynamic_cache_fix(model, method_name, *args, **kwargs): | |
""" | |
Comprehensive safe model call that handles DynamicCache errors with multiple fallback strategies | |
""" | |
# Strategy 1: Try with complete cache clearing and minimal parameters | |
try: | |
# Clear all possible caches first | |
try: | |
if hasattr(model, 'clear_cache'): | |
model.clear_cache() | |
if hasattr(model, '_clear_cache'): | |
model._clear_cache() | |
# Clear transformers cache | |
try: | |
import torch | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
except: | |
pass | |
# Clear any generation cache | |
try: | |
if hasattr(model, 'generation_config'): | |
if hasattr(model.generation_config, 'clear_cache'): | |
model.generation_config.clear_cache() | |
except: | |
pass | |
except: | |
pass | |
# Create minimal kwargs with only essential parameters | |
minimal_kwargs = {} | |
essential_params = ['ocr_type', 'render', 'save_render_file', 'ocr_box', 'ocr_color'] | |
for key, value in kwargs.items(): | |
if key in essential_params and 'cache' not in key.lower(): | |
minimal_kwargs[key] = value | |
method = getattr(model, method_name) | |
return method(*args, **minimal_kwargs) | |
except AttributeError as e: | |
if "get_max_length" in str(e) and "DynamicCache" in str(e): | |
print("DynamicCache error detected, applying comprehensive workaround...") | |
# Strategy 2: Try with model cache manager | |
try: | |
return cache_manager.direct_call(method_name, *args, **kwargs) | |
except Exception as cache_error: | |
print(f"Cache manager failed: {str(cache_error)}") | |
# Strategy 3: Try with legacy cache handling | |
try: | |
return cache_manager.legacy_call(method_name, *args, **kwargs) | |
except Exception as legacy_error: | |
print(f"Legacy cache handling failed: {str(legacy_error)}") | |
# Strategy 4: Try with completely stripped parameters | |
try: | |
# Remove ALL parameters except the most basic ones | |
stripped_kwargs = {} | |
if 'ocr_type' in kwargs: | |
stripped_kwargs['ocr_type'] = kwargs['ocr_type'] | |
method = getattr(model, method_name) | |
return method(*args, **stripped_kwargs) | |
except Exception as stripped_error: | |
print(f"Stripped parameters failed: {str(stripped_error)}") | |
# Strategy 5: Try with monkey patching to bypass cache | |
try: | |
# Temporarily disable cache-related attributes | |
original_attrs = {} | |
# Store original attributes that might cause issues | |
for attr_name in ['cache', '_cache', 'past_key_values', 'use_cache']: | |
if hasattr(model, attr_name): | |
original_attrs[attr_name] = getattr(model, attr_name) | |
try: | |
delattr(model, attr_name) | |
except: | |
pass | |
# Try the call | |
method = getattr(model, method_name) | |
result = method(*args, **stripped_kwargs) | |
# Restore original attributes | |
for attr_name, value in original_attrs.items(): | |
try: | |
setattr(model, attr_name, value) | |
except: | |
pass | |
return result | |
except Exception as monkey_error: | |
print(f"Monkey patching failed: {str(monkey_error)}") | |
# Strategy 6: Final fallback - try with no parameters at all | |
try: | |
method = getattr(model, method_name) | |
return method(*args) | |
except Exception as final_error: | |
raise Exception(f"All DynamicCache workarounds failed. Last error: {str(final_error)}") | |
else: | |
# Re-raise if it's not the DynamicCache error | |
raise e | |
except Exception as e: | |
# Handle other errors | |
raise e | |
def process_image(image, task, ocr_type=None, ocr_box=None, ocr_color=None): | |
""" | |
Process image with OCR using ZeroGPU-compatible approach | |
""" | |
# Clear global cache at the start to prevent DynamicCache issues | |
global_cache_clear() | |
if image is None: | |
return "Error: No image provided", None, None | |
unique_id = str(uuid.uuid4()) | |
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png") | |
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html") | |
try: | |
if isinstance(image, dict): | |
composite_image = image.get("composite") | |
if composite_image is not None: | |
if isinstance(composite_image, np.ndarray): | |
cv2.imwrite(image_path, cv2.cvtColor(composite_image, cv2.COLOR_RGB2BGR)) | |
elif isinstance(composite_image, Image.Image): | |
composite_image.save(image_path) | |
else: | |
return "Error: Unsupported image format from ImageEditor", None, None | |
else: | |
return "Error: No composite image found in ImageEditor output", None, None | |
elif isinstance(image, np.ndarray): | |
cv2.imwrite(image_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR)) | |
elif isinstance(image, str): | |
shutil.copy(image, image_path) | |
else: | |
return "Error: Unsupported image format", None, None | |
# Use specialized DynamicCache-safe model calls | |
try: | |
if task == "Plain Text OCR": | |
res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type='ocr') | |
return res, None, unique_id | |
else: | |
if task == "Format Text OCR": | |
res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif task == "Fine-grained OCR (Box)": | |
res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path) | |
elif task == "Fine-grained OCR (Color)": | |
res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path) | |
elif task == "Multi-crop OCR": | |
res = cache_manager.dynamic_cache_safe_call('chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif task == "Render Formatted OCR": | |
res = cache_manager.dynamic_cache_safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
if os.path.exists(result_path): | |
with open(result_path, 'r') as f: | |
html_content = f.read() | |
return res, html_content, unique_id | |
else: | |
return res, None, unique_id | |
except Exception as e: | |
# If dynamic cache safe call fails, try with comprehensive workaround | |
try: | |
if task == "Plain Text OCR": | |
res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type='ocr') | |
return res, None, unique_id | |
else: | |
if task == "Format Text OCR": | |
res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif task == "Fine-grained OCR (Box)": | |
res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path) | |
elif task == "Fine-grained OCR (Color)": | |
res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path) | |
elif task == "Multi-crop OCR": | |
res = safe_model_call_with_dynamic_cache_fix(model, 'chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif task == "Render Formatted OCR": | |
res = safe_model_call_with_dynamic_cache_fix(model, 'chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
if os.path.exists(result_path): | |
with open(result_path, 'r') as f: | |
html_content = f.read() | |
return res, html_content, unique_id | |
else: | |
return res, None, unique_id | |
except Exception as fallback_error: | |
# Final fallback to basic cache manager | |
try: | |
if task == "Plain Text OCR": | |
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='ocr') | |
return res, None, unique_id | |
else: | |
if task == "Format Text OCR": | |
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif task == "Fine-grained OCR (Box)": | |
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_box=ocr_box, render=True, save_render_file=result_path) | |
elif task == "Fine-grained OCR (Color)": | |
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type=ocr_type, ocr_color=ocr_color, render=True, save_render_file=result_path) | |
elif task == "Multi-crop OCR": | |
res = cache_manager.safe_call('chat_crop', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
elif task == "Render Formatted OCR": | |
res = cache_manager.safe_call('chat', tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path) | |
if os.path.exists(result_path): | |
with open(result_path, 'r') as f: | |
html_content = f.read() | |
return res, html_content, unique_id | |
else: | |
return res, None, unique_id | |
except Exception as final_error: | |
return f"Error: {str(final_error)}", None, None | |
except Exception as e: | |
return f"Error: {str(e)}", None, None | |
finally: | |
if os.path.exists(image_path): | |
os.remove(image_path) | |
def update_image_input(task): | |
if task == "Fine-grained OCR (Color)": | |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True) | |
else: | |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) | |
def update_inputs(task): | |
if task in ["Plain Text OCR", "Format Text OCR", "Multi-crop OCR", "Render Formatted OCR"]: | |
return [ | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=False) | |
] | |
elif task == "Fine-grained OCR (Box)": | |
return [ | |
gr.update(visible=True, choices=["ocr", "format"]), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=False) | |
] | |
elif task == "Fine-grained OCR (Color)": | |
return [ | |
gr.update(visible=True, choices=["ocr", "format"]), | |
gr.update(visible=False), | |
gr.update(visible=True, choices=["red", "green", "blue"]), | |
gr.update(visible=False), | |
gr.update(visible=True), | |
gr.update(visible=False), | |
gr.update(visible=True) | |
] | |
def parse_latex_output(res): | |
# Split the input, preserving newlines and empty lines | |
lines = re.split(r'(\$\$.*?\$\$)', res, flags=re.DOTALL) | |
parsed_lines = [] | |
in_latex = False | |
latex_buffer = [] | |
for line in lines: | |
if line == '\n': | |
if in_latex: | |
latex_buffer.append(line) | |
else: | |
parsed_lines.append(line) | |
continue | |
line = line.strip() | |
latex_patterns = [r'\{', r'\}', r'\[', r'\]', r'\\', r'\$', r'_', r'^', r'"'] | |
contains_latex = any(re.search(pattern, line) for pattern in latex_patterns) | |
if contains_latex: | |
if not in_latex: | |
in_latex = True | |
latex_buffer = ['$$'] | |
latex_buffer.append(line) | |
else: | |
if in_latex: | |
latex_buffer.append('$$') | |
parsed_lines.extend(latex_buffer) | |
in_latex = False | |
latex_buffer = [] | |
parsed_lines.append(line) | |
if in_latex: | |
latex_buffer.append('$$') | |
parsed_lines.extend(latex_buffer) | |
return '$$\\$$\n'.join(parsed_lines) | |
def ocr_demo(image, task, ocr_type, ocr_box, ocr_color): | |
""" | |
Main OCR demonstration function that processes images and returns results. | |
Args: | |
image (Union[dict, np.ndarray, str, PIL.Image]): Input image in one of these formats: Image component state with keys: path: str | None (Path to local file) url: str | None (Public URL or base64 image) size: int | None (Image size in bytes) orig_name: str | None (Original filename) mime_type: str | None (Image MIME type) is_stream: bool (Always False) meta: dict(str, Any) OR dict: ImageEditor component state with keys: background: filepath | None layers: list[filepath] composite: filepath | None id: str | None OR np.ndarray: Raw image array str: Path to image file PIL.Image: PIL Image object | |
task (Literal['Plain Text OCR', 'Format Text OCR', 'Fine-grained OCR (Box)', 'Fine-grained OCR (Color)', 'Multi-crop OCR', 'Render Formatted OCR'], default: "Plain Text OCR"): The type of OCR processing to perform: "Plain Text OCR": Basic text extraction without formatting, "Format Text OCR": Text extraction with preserved formatting, "Fine-grained OCR (Box)": Text extraction from specific bounding box regions, "Fine-grained OCR (Color)": Text extraction from regions marked with specific colors, "Multi-crop OCR": Text extraction from multiple cropped regions, "Render Formatted OCR": Text extraction with HTML rendering of formatting | |
ocr_type (Literal['ocr', 'format'], default: "ocr"):The type of OCR processing to apply: "ocr": Basic text extraction without formatting "format": Text extraction with preserved formatting and structure | |
ocr_box (str): Bounding box coordinates specifying the region for fine-grained OCR. Format: "x1,y1,x2,y2" where: x1,y1: Top-left corner coordinates ; x2,y2: Bottom-right corner coordinates Example: "100,100,300,200" for a box starting at (100,100) and ending at (300,200) | |
ocr_color (Literal['red', 'green', 'blue'], default: "red"): Color specification for fine-grained OCR when using color-based region selection: "red": Extract text from regions marked in red "green": Extract text from regions marked in green "blue": Extract text from regions marked in blue | |
Returns: | |
tuple: (formatted_result, html_output) | |
- formatted_result (str): Formatted OCR result text | |
- html_output (str): HTML visualization if applicable | |
""" | |
res, html_content, unique_id = process_image(image, task, ocr_type, ocr_box, ocr_color) | |
if isinstance(res, str) and res.startswith("Error:"): | |
return res, None | |
res = res.replace("\\title", "\\title ") | |
formatted_res = res | |
# formatted_res = parse_latex_output(res) | |
if html_content: | |
encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8') | |
iframe_src = f"data:text/html;base64,{encoded_html}" | |
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>' | |
download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>' | |
return formatted_res, f"{download_link}<br>{iframe}" | |
return formatted_res, None | |
def cleanup_old_files(): | |
current_time = time.time() | |
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]: | |
for file_path in Path(folder).glob('*'): | |
if current_time - file_path.stat().st_mtime > 3600: # 1 hour | |
file_path.unlink() | |
with gr.Blocks(theme=gr.themes.Base()) as demo: | |
with gr.Row(): | |
gr.Markdown(title) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Group(): | |
gr.Markdown(description) | |
with gr.Column(scale=1): | |
with gr.Group(): | |
gr.Markdown(modelinfor) | |
gr.Markdown(joinus) | |
with gr.Row(): | |
with gr.Accordion("How to use Fine-grained OCR (Color)", open=False): | |
with gr.Row(): | |
gr.Image("res/image/howto_1.png", label="Select the Following Parameters") | |
gr.Image("res/image/howto_2.png", label="Click on Paintbrush in the Image Editor") | |
gr.Image("res/image/howto_3.png", label="Select your Brush Color (Red)") | |
gr.Image("res/image/howto_4.png", label="Make a Box Around The Text") | |
with gr.Row(): | |
with gr.Group(): | |
gr.Markdown(howto) | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Group(): | |
image_input = gr.Image(type="filepath", label="Input Image") | |
image_editor = gr.ImageEditor(label="Image Editor", type="pil", visible=False) | |
task_dropdown = gr.Dropdown( | |
choices=[ | |
"Plain Text OCR", | |
"Format Text OCR", | |
"Fine-grained OCR (Box)", | |
"Fine-grained OCR (Color)", | |
"Multi-crop OCR", | |
"Render Formatted OCR" | |
], | |
label="Select Task", | |
value="Plain Text OCR" | |
) | |
ocr_type_dropdown = gr.Dropdown( | |
choices=["ocr", "format"], | |
label="OCR Type", | |
visible=False | |
) | |
ocr_box_input = gr.Textbox( | |
label="OCR Box (x1,y1,x2,y2)", | |
placeholder="[100,100,200,200]", | |
visible=False | |
) | |
ocr_color_dropdown = gr.Dropdown( | |
choices=["red", "green", "blue"], | |
label="OCR Color", | |
visible=False | |
) | |
# with gr.Row(): | |
# max_new_tokens_slider = gr.Slider(50, 500, step=10, value=150, label="Max New Tokens") | |
# no_repeat_ngram_size_slider = gr.Slider(1, 10, step=1, value=2, label="No Repeat N-gram Size") | |
submit_button = gr.Button("Process") | |
editor_submit_button = gr.Button("Process Edited Image", visible=False) | |
with gr.Column(scale=1): | |
with gr.Group(): | |
output_markdown = gr.Textbox(label="🫴🏻📸GOT-OCR") | |
output_html = gr.HTML(label="🫴🏻📸GOT-OCR") | |
task_dropdown.change( | |
update_inputs, | |
inputs=[task_dropdown], | |
outputs=[ocr_type_dropdown, ocr_box_input, ocr_color_dropdown, image_input, image_editor, submit_button, editor_submit_button] | |
) | |
task_dropdown.change( | |
update_image_input, | |
inputs=[task_dropdown], | |
outputs=[image_input, image_editor, editor_submit_button] | |
) | |
submit_button.click( | |
ocr_demo, | |
inputs=[image_input, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown], | |
outputs=[output_markdown, output_html] | |
) | |
editor_submit_button.click( | |
ocr_demo, | |
inputs=[image_editor, task_dropdown, ocr_type_dropdown, ocr_box_input, ocr_color_dropdown], | |
outputs=[output_markdown, output_html] | |
) | |
if __name__ == "__main__": | |
cleanup_old_files() | |
demo.launch(ssr_mode = False, mcp_server=True) |