Spaces:
Running
Running
File size: 19,195 Bytes
56f497c 70ebea3 a103fac b73515b cae0132 4a7fa9d 56f497c a264b08 cae0132 4596a5d 8b76c73 4894c8f 2da2e03 e647eeb 590c882 53f9025 3e539e5 ec5a10c a50fb3c 9f0b22d a50fb3c 309f943 9b5378d e13fba3 310e819 0b61062 309f943 f9372de 309f943 e0a87d2 309f943 a48172f e0a87d2 a48172f 309f943 2055eee ca0c849 309f943 b55f91a 4a7fa9d b55f91a ec5a10c 8be3c99 ec5a10c 3b73549 d529fb5 3b73549 d529fb5 3b73549 d529fb5 3b73549 0d866f3 326c762 0d866f3 590c882 0d866f3 326c762 78a6dc6 1e48bdd cc8d7bd 18980c7 cc8d7bd 3be98e3 cc8d7bd 4ac6a8d e165775 1800b84 4ac6a8d ca788da 4ac6a8d b1a4240 79ff2d1 b1a4240 8010198 9b5378d 4b5e076 2851846 e647eeb 8010198 4dceed6 2851846 82b2dc4 4dceed6 c6ce97e 4dceed6 8010198 9b5378d a264b08 ae4ff0a a264b08 a50fb3c ae4ff0a 4bd448b ae4ff0a a50fb3c 3e539e5 a50fb3c 3e539e5 31da34a 3e539e5 a50fb3c 70ebea3 4dfd4b1 135432f 481d87b 135432f 481d87b 135432f 481d87b 135432f 481d87b 4dfd4b1 481d87b 135432f 481d87b 4596a5d 3b73549 ad4a802 148dd30 5fc3c5d 148dd30 309f943 8be3c99 148dd30 309f943 148dd30 4dceed6 148dd30 9b5378d 148dd30 310e819 148dd30 3e539e5 148dd30 a770d4a 148dd30 53f9025 56f497c 8be3c99 2169b22 56f497c 9f0b22d 56f497c e647eeb 2169b22 56f497c 7b79ed9 fc2994c 6f52ad9 56f497c 9f0b22d 56f497c 8b76c73 e06dabc 16105d3 9f0b22d 56f497c e06dabc 56f497c b98b60d 56f497c 28cef2e 16105d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
import gradio as gr
import spaces
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, AutoModel, pipeline, logging
import languagecodes
import requests, os
logging.set_verbosity_error()
favourite_langs = {"German": "de", "Romanian": "ro", "English": "en", "-----": "-----"}
all_langs = languagecodes.iso_languages
# Language options as list, add favourite languages first
options = list(favourite_langs.keys())
options.extend(list(all_langs.keys()))
models = ["Helsinki-NLP",
"t5-small", "t5-base", "t5-large",
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl",
"facebook/nllb-200-distilled-600M", "facebook/nllb-200-distilled-1.3B", "facebook/nllb-200-1.3B", "facebook/nllb-200-3.3B",
"facebook/mbart-large-50-many-to-many-mmt", "facebook/mbart-large-50-one-to-many-mmt", "facebook/mbart-large-50-many-to-one-mmt",
"facebook/m2m100_418M", "facebook/m2m100_1.2B",
"bigscience/mt0-small", "bigscience/mt0-base", "bigscience/mt0-large", "bigscience/mt0-xl",
"bigscience/bloomz-560m", "bigscience/bloomz-1b1", "bigscience/bloomz-1b7", "bigscience/bloomz-3b",
"Argos", "Google",
"utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
"Unbabel/Tower-Plus-2B", "Unbabel/TowerInstruct-7B-v0.2", "Unbabel/TowerInstruct-Mistral-7B-v0.2",
"openGPT-X/Teuken-7B-instruct-commercial-v0.4", "openGPT-X/Teuken-7B-instruct-v0.6"
]
def model_to_cuda(model):
# Move the model to GPU if available
if torch.cuda.is_available():
model = model.to('cuda')
print("CUDA is available! Using GPU.")
else:
print("CUDA not available! Using CPU.")
return model
def download_argos_model(from_code, to_code):
import argostranslate.package
print('Downloading model', from_code, to_code)
# Download and install Argos Translate package
argostranslate.package.update_package_index()
available_packages = argostranslate.package.get_available_packages()
package_to_install = next(
filter(
lambda x: x.from_code == from_code and x.to_code == to_code, available_packages
)
)
argostranslate.package.install_from_path(package_to_install.download())
def argos(sl, tl, input_text):
import argostranslate.translate, argostranslate.package
# Translate
try:
download_argos_model(sl, tl)
translated_text = argostranslate.translate.translate(input_text, sl, tl)
except StopIteration:
# packages_info = ', '.join(f"{pkg.get_description()}->{str(pkg.links)} {str(pkg.source_languages)}" for pkg in argostranslate.package.get_available_packages())
packages_info = ', '.join(f"{pkg.from_name} ({pkg.from_code}) -> {pkg.to_name} ({pkg.to_code})" for pkg in argostranslate.package.get_available_packages())
translated_text = f"No Argos model for {sl} to {tl}. Try other model or languages combination from the available Argos models: {packages_info}."
except Exception as error:
translated_text = error
print(error)
return translated_text
def google(sl, tl, input_text):
url = os.environ['GCLIENT'] + f'sl={sl}&tl={tl}&q={input_text}'
response = requests.get(url)
return response.json()[0][0][0]
def mtom(model_name, sl, tl, input_text):
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
tokenizer.src_lang = sl
encoded = tokenizer(input_text, return_tensors="pt")
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(tl))
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def HelsinkiNLPAutoTokenizer(sl, tl, input_text):
if model_name == "Helsinki-NLP":
message_text = f'Translated from {sl} to {tl} with {model_name}.'
try:
model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
except EnvironmentError:
try:
model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=512)
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return translated_text, message_text
except EnvironmentError as error:
return f"Error finding model: {model_name}! Try other available language combination.", error
def HelsinkiNLP(sl, tl, input_text):
try:
model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
pipe = pipeline("translation", model=model_name, device=-1)
# translation = pipe(input_text)
# return translation[0]['translation_text'], f'Translated from {sl} to {tl} with {model_name}.'
except EnvironmentError:
try:
model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
pipe = pipeline("translation", model=model_name, device=-1)
translation = pipe(input_text)
return translation[0]['translation_text'], f'Translated from {sl} to {tl} with {model_name}.'
except EnvironmentError as error:
return f"Error finding model: {model_name}! Try other available language combination.", error
except KeyError as error:
return f"Error: Translation direction {sl} to {tl} is not supported by Helsinki Translation Models", error
def flan(model_name, sl, tl, input_text):
tokenizer = T5Tokenizer.from_pretrained(model_name, legacy=False)
model = T5ForConditionalGeneration.from_pretrained(model_name)
input_text = f"translate {sl} to {tl}: {input_text}"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
outputs = model.generate(input_ids)
return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
def tfive(model_name, sl, tl, input_text):
tokenizer = T5Tokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")
prompt = f"translate {sl} to {tl}: {input_text}"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=512)
translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
return translated_text
def teuken(model_name, sl, tl, input_text):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForCausalLM.from_pretrained(
model_name,
trust_remote_code=True,
torch_dtype=torch.bfloat16,
)
model = model.to(device).eval()
tokenizer = AutoTokenizer.from_pretrained(
model_name,
use_fast=False,
trust_remote_code=True,
)
translation_prompt = f"Translate the following text from {sl} into {tl}: {input_text}"
messages = [{"role": "User", "content": translation_prompt}]
prompt_ids = tokenizer.apply_chat_template(messages, chat_template="EN", tokenize=True, add_generation_prompt=False, return_tensors="pt")
prediction = model.generate(
prompt_ids.to(model.device),
max_length=512,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7,
num_return_sequences=1,
)
translation = tokenizer.decode(prediction[0].tolist())
return translation
def bigscience(model_name, sl, tl, input_text):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
inputs = tokenizer.encode(f"Translate to {tl}: {input_text}.", return_tensors="pt")
outputs = model.generate(inputs)
translation = tokenizer.decode(outputs[0])
translation = translation.replace('<pad> ', '').replace('</s>', '')
return translation
def bloomz(model_name, sl, tl, input_text):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
inputs = tokenizer.encode(f"Translate from {sl} to {tl}: {input_text}. Translation:", return_tensors="pt")
outputs = model.generate(inputs)
translation = tokenizer.decode(outputs[0])
translation = translation.replace('<pad> ', '').replace('</s>', '')
return translation
def eurollm(model_name, sl, tl, input_text):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
prompt = f"{sl}: {input_text} {tl}:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
result = output.rsplit(f'{tl}:')[-1].strip()
return result
def eurollm_instruct(model_name, sl, tl, input_text):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
text = f'<|im_start|>system\n<|im_end|>\n<|im_start|>user\nTranslate the following {sl} source text to {tl}:\n{sl}: {input_text} \n{tl}: <|im_end|>\n<|im_start|>assistant\n'
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
if f'{tl}:' in output:
output = output.rsplit(f'{tl}:')[-1].strip().replace('assistant\n', '')
return output
def nllb(model_name, sl, tl, input_text):
tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=sl)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=sl, tgt_lang=tl)
translated_text = translator(input_text, max_length=512)
return translated_text[0]['translation_text']
def unbabel(model_name, sl, tl, input_text):
pipe = pipeline("text-generation", model=model_name, torch_dtype=torch.bfloat16, device_map="auto")
messages = [{"role": "user",
"content": f"Translate the following text from {sl} into {tl}.\n{sl}: {input_text}.\n{tl}:"}]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
outputs = pipe(prompt, max_new_tokens=256, do_sample=False)
translated_text = outputs[0]["generated_text"]
start_marker = "<end_of_turn>"
if start_marker in translated_text:
translated_text = translated_text.split(start_marker)[1].strip()
translated_text = translated_text.replace('Answer:', '', 1).strip() if translated_text.startswith('Answer:') else translated_text
return translated_text
def mbart_many_to_many(model_name, sl, tl, input_text):
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained(model_name)
tokenizer = MBart50TokenizerFast.from_pretrained(model_name)
# translate source to target
tokenizer.src_lang = languagecodes.mbart_large_languages[sl]
encoded = tokenizer(input_text, return_tensors="pt")
generated_tokens = model.generate(
**encoded,
forced_bos_token_id=tokenizer.lang_code_to_id[languagecodes.mbart_large_languages[tl]]
)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def mbart_one_to_many(model_name, sl, tl, input_text):
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
article_en = input_text
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt", src_lang="en_XX")
model_inputs = tokenizer(article_en, return_tensors="pt")
# translate from English
langid = languagecodes.mbart_large_languages[tl]
generated_tokens = model.generate(
**model_inputs,
forced_bos_token_id=tokenizer.lang_code_to_id[langid]
)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def mbart_many_to_one(model_name, sl, tl, input_text):
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
# translate to English
tokenizer.src_lang = languagecodes.mbart_large_languages[sl]
encoded = tokenizer(input_text, return_tensors="pt")
generated_tokens = model.generate(**encoded)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
@spaces.GPU
def translate_text(input_text: str, sselected_language: str, tselected_language: str, model_name: str) -> tuple[str, str]:
"""
Translates the input text from the source language to the target language using a specified model.
Parameters:
input_text (str): The source text to be translated
sselected_language (str): The source language of the input text
tselected_language (str): The target language in which the input text is translated
model_name (str): The selected translation model name
Returns:
tuple:
translated_text(str): The input text translated to the selected target language
message_text(str): A descriptive message summarizing the translation process. Example: "Translated from English to German with Helsinki-NLP."
Example:
>>> translate_text("Hello world", "English", "German", "Helsinki-NLP")
("Hallo Welt", "Translated from English to German with Helsinki-NLP.")
"""
sl = all_langs[sselected_language]
tl = all_langs[tselected_language]
message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}'
print(message_text)
try:
if model_name.startswith("Helsinki-NLP"):
translated_text, message_text = HelsinkiNLP(sl, tl, input_text)
elif model_name == 'Argos':
translated_text = argos(sl, tl, input_text)
elif model_name == 'Google':
translated_text = google(sl, tl, input_text)
elif "m2m" in model_name.lower():
translated_text = mtom(model_name, sl, tl, input_text)
elif model_name == "utter-project/EuroLLM-1.7B-Instruct":
translated_text = eurollm_instruct(model_name, sselected_language, tselected_language, input_text)
elif model_name == "utter-project/EuroLLM-1.7B":
translated_text = eurollm(model_name, sselected_language, tselected_language, input_text)
elif 'flan' in model_name.lower():
translated_text = flan(model_name, sselected_language, tselected_language, input_text)
elif 'teuken' in model_name.lower():
translated_text = teuken(model_name, sselected_language, tselected_language, input_text)
elif 'mt0' in model_name.lower():
translated_text = bigscience(model_name, sselected_language, tselected_language, input_text)
elif 'bloomz' in model_name.lower():
translated_text = bloomz(model_name, sselected_language, tselected_language, input_text)
elif 'nllb' in model_name.lower():
nnlbsl, nnlbtl = languagecodes.nllb_language_codes[sselected_language], languagecodes.nllb_language_codes[tselected_language]
translated_text = nllb(model_name, nnlbsl, nnlbtl, input_text)
elif model_name == "facebook/mbart-large-50-many-to-many-mmt":
translated_text = mbart_many_to_many(model_name, sselected_language, tselected_language, input_text)
elif model_name == "facebook/mbart-large-50-one-to-many-mmt":
translated_text = mbart_one_to_many(model_name, sselected_language, tselected_language, input_text)
elif model_name == "facebook/mbart-large-50-many-to-one-mmt":
translated_text = mbart_many_to_one(model_name, sselected_language, tselected_language, input_text)
elif 'Unbabel' in model_name:
translated_text = unbabel(model_name, sselected_language, tselected_language, input_text)
elif model_name.startswith('t5'):
translated_text = tfive(model_name, sselected_language, tselected_language, input_text)
except Exception as error:
translated_text = error
finally:
return translated_text, message_text
# Function to swap dropdown values
def swap_languages(src_lang, tgt_lang):
return tgt_lang, src_lang
def create_interface():
with gr.Blocks() as interface:
gr.Markdown("### Machine Text Translation with Gradio API and MCP Server")
with gr.Row():
input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here, maximum 512 tokens")
with gr.Row():
sselected_language = gr.Dropdown(choices=options, value = options[0], label="Source language", interactive=True)
tselected_language = gr.Dropdown(choices=options, value = options[1], label="Target language", interactive=True)
swap_button = gr.Button("Swap Languages", size="md")
swap_button.click(fn=swap_languages, inputs=[sselected_language, tselected_language], outputs=[sselected_language, tselected_language], api_name=False, show_api=False)
model_name = gr.Dropdown(choices=models, label=f"Select a model. Default is {models[0]}.", value = models[0], interactive=True)
translate_button = gr.Button("Translate")
translated_text = gr.Textbox(label="Translated text:", placeholder="Display field for translation", interactive=False, show_copy_button=True)
message_text = gr.Textbox(label="Messages:", placeholder="Display field for status and error messages", interactive=False,
value=f'Default translation settings: from {sselected_language.value} to {tselected_language.value} with {model_name.value}.')
allmodels = gr.HTML(label="Model links:", value=', '.join([f'<a href="https://huggingface.co/{model}">{model}</a>' for model in models]))
translate_button.click(
fn=translate_text,
inputs=[input_text, sselected_language, tselected_language, model_name],
outputs=[translated_text, message_text]
)
return interface
interface = create_interface()
if __name__ == "__main__":
interface.launch(mcp_server=True)
# interface.queue().launch(server_name="0.0.0.0", show_error=True, server_port=7860, mcp_server=True) |