File size: 19,195 Bytes
56f497c
70ebea3
a103fac
b73515b
cae0132
4a7fa9d
56f497c
a264b08
cae0132
4596a5d
8b76c73
4894c8f
2da2e03
 
e647eeb
590c882
 
53f9025
3e539e5
ec5a10c
a50fb3c
 
9f0b22d
a50fb3c
309f943
 
9b5378d
e13fba3
310e819
 
 
 
 
 
 
 
0b61062
309f943
 
 
 
 
 
 
 
 
 
 
 
 
 
f9372de
309f943
 
e0a87d2
309f943
 
a48172f
e0a87d2
a48172f
309f943
 
2055eee
ca0c849
309f943
b55f91a
 
4a7fa9d
b55f91a
 
ec5a10c
 
 
 
 
 
 
8be3c99
ec5a10c
3b73549
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d529fb5
3b73549
 
 
 
 
d529fb5
3b73549
 
 
 
 
d529fb5
3b73549
0d866f3
326c762
0d866f3
590c882
0d866f3
 
326c762
78a6dc6
1e48bdd
 
 
 
 
 
 
 
 
cc8d7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18980c7
cc8d7bd
 
 
 
 
 
 
 
 
3be98e3
 
cc8d7bd
4ac6a8d
e165775
 
1800b84
4ac6a8d
ca788da
 
 
4ac6a8d
b1a4240
 
 
79ff2d1
b1a4240
 
 
 
 
8010198
 
 
 
9b5378d
4b5e076
2851846
e647eeb
8010198
 
4dceed6
 
 
 
 
2851846
82b2dc4
4dceed6
c6ce97e
4dceed6
 
8010198
 
 
 
 
 
9b5378d
a264b08
 
 
 
 
 
 
 
 
 
ae4ff0a
a264b08
 
a50fb3c
ae4ff0a
 
 
 
 
 
 
 
 
 
4bd448b
ae4ff0a
a50fb3c
 
 
 
 
 
3e539e5
a50fb3c
 
 
 
 
3e539e5
 
 
 
 
 
 
31da34a
3e539e5
 
 
a50fb3c
70ebea3
4dfd4b1
135432f
481d87b
135432f
481d87b
135432f
 
 
481d87b
135432f
 
481d87b
 
4dfd4b1
481d87b
 
 
 
135432f
481d87b
4596a5d
 
3b73549
ad4a802
148dd30
 
 
 
 
 
5fc3c5d
148dd30
 
309f943
8be3c99
148dd30
 
 
 
 
 
 
309f943
148dd30
 
 
 
 
4dceed6
148dd30
 
 
 
 
 
 
 
 
9b5378d
148dd30
 
310e819
148dd30
 
3e539e5
148dd30
 
 
 
 
 
 
 
a770d4a
148dd30
 
53f9025
 
56f497c
8be3c99
2169b22
 
 
56f497c
 
9f0b22d
56f497c
 
e647eeb
2169b22
56f497c
7b79ed9
 
fc2994c
6f52ad9
56f497c
9f0b22d
56f497c
 
8b76c73
e06dabc
16105d3
9f0b22d
56f497c
 
e06dabc
56f497c
b98b60d
56f497c
 
 
 
 
28cef2e
16105d3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
import gradio as gr
import spaces
import torch
from transformers import T5Tokenizer, T5ForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, AutoModel, pipeline, logging
import languagecodes
import requests, os

logging.set_verbosity_error()
favourite_langs = {"German": "de", "Romanian": "ro", "English": "en", "-----": "-----"}
all_langs = languagecodes.iso_languages

# Language options as list, add favourite languages first
options = list(favourite_langs.keys())
options.extend(list(all_langs.keys()))
models = ["Helsinki-NLP",
          "t5-small", "t5-base", "t5-large",
          "google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large", "google/flan-t5-xl",
          "facebook/nllb-200-distilled-600M", "facebook/nllb-200-distilled-1.3B", "facebook/nllb-200-1.3B", "facebook/nllb-200-3.3B",
          "facebook/mbart-large-50-many-to-many-mmt", "facebook/mbart-large-50-one-to-many-mmt", "facebook/mbart-large-50-many-to-one-mmt",
          "facebook/m2m100_418M", "facebook/m2m100_1.2B",
          "bigscience/mt0-small", "bigscience/mt0-base", "bigscience/mt0-large", "bigscience/mt0-xl",
          "bigscience/bloomz-560m", "bigscience/bloomz-1b1", "bigscience/bloomz-1b7", "bigscience/bloomz-3b",
          "Argos", "Google",
          "utter-project/EuroLLM-1.7B", "utter-project/EuroLLM-1.7B-Instruct",
          "Unbabel/Tower-Plus-2B", "Unbabel/TowerInstruct-7B-v0.2", "Unbabel/TowerInstruct-Mistral-7B-v0.2",
          "openGPT-X/Teuken-7B-instruct-commercial-v0.4", "openGPT-X/Teuken-7B-instruct-v0.6"
          ]

def model_to_cuda(model):
    # Move the model to GPU if available
    if torch.cuda.is_available():
        model = model.to('cuda')
        print("CUDA is available! Using GPU.")
    else:
        print("CUDA not available! Using CPU.")
    return model

def download_argos_model(from_code, to_code):
    import argostranslate.package
    print('Downloading model', from_code, to_code) 
    # Download and install Argos Translate package
    argostranslate.package.update_package_index()
    available_packages = argostranslate.package.get_available_packages()
    package_to_install = next(
        filter(
            lambda x: x.from_code == from_code and x.to_code == to_code, available_packages
        )
    )
    argostranslate.package.install_from_path(package_to_install.download())

def argos(sl, tl, input_text):
    import argostranslate.translate, argostranslate.package       
    # Translate
    try:
        download_argos_model(sl, tl)
        translated_text = argostranslate.translate.translate(input_text, sl, tl)
    except StopIteration:
        # packages_info = ', '.join(f"{pkg.get_description()}->{str(pkg.links)} {str(pkg.source_languages)}" for pkg in argostranslate.package.get_available_packages())
        packages_info = ', '.join(f"{pkg.from_name} ({pkg.from_code}) -> {pkg.to_name} ({pkg.to_code})" for pkg in argostranslate.package.get_available_packages())
        translated_text = f"No Argos model for {sl} to {tl}. Try other model or languages combination from the available Argos models: {packages_info}."
    except Exception as error:
        translated_text = error
        print(error)
    return translated_text

def google(sl, tl, input_text):  
    url = os.environ['GCLIENT'] + f'sl={sl}&tl={tl}&q={input_text}'
    response = requests.get(url)
    return response.json()[0][0][0]

def mtom(model_name, sl, tl, input_text):
    from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
    model = M2M100ForConditionalGeneration.from_pretrained(model_name)
    tokenizer = M2M100Tokenizer.from_pretrained(model_name)
    tokenizer.src_lang = sl
    encoded = tokenizer(input_text, return_tensors="pt")
    generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(tl))
    return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]

def HelsinkiNLPAutoTokenizer(sl, tl, input_text):
    if model_name == "Helsinki-NLP":
        message_text = f'Translated from {sl} to {tl} with {model_name}.'
        try:
            model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
        except EnvironmentError:
            try:   
                model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
                tokenizer = AutoTokenizer.from_pretrained(model_name)
                model = model_to_cuda(AutoModelForSeq2SeqLM.from_pretrained(model_name))
                input_ids = tokenizer.encode(prompt, return_tensors="pt")
                output_ids = model.generate(input_ids, max_length=512)
                translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
                return translated_text, message_text
            except EnvironmentError as error:
                return f"Error finding model: {model_name}! Try other available language combination.", error
                
def HelsinkiNLP(sl, tl, input_text):
    try:
        model_name = f"Helsinki-NLP/opus-mt-{sl}-{tl}"
        pipe = pipeline("translation", model=model_name, device=-1)
        # translation = pipe(input_text)
        # return translation[0]['translation_text'], f'Translated from {sl} to {tl} with {model_name}.'
    except EnvironmentError:
        try:   
            model_name = f"Helsinki-NLP/opus-tatoeba-{sl}-{tl}"
            pipe = pipeline("translation", model=model_name, device=-1)
            translation = pipe(input_text)
            return translation[0]['translation_text'], f'Translated from {sl} to {tl} with {model_name}.'
        except EnvironmentError as error:
            return f"Error finding model: {model_name}! Try other available language combination.", error
    except KeyError as error:
        return f"Error: Translation direction {sl} to {tl} is not supported by Helsinki Translation Models", error     

def flan(model_name, sl, tl, input_text):
    tokenizer = T5Tokenizer.from_pretrained(model_name, legacy=False)
    model = T5ForConditionalGeneration.from_pretrained(model_name)
    input_text = f"translate {sl} to {tl}: {input_text}"
    input_ids = tokenizer(input_text, return_tensors="pt").input_ids
    outputs = model.generate(input_ids)
    return tokenizer.decode(outputs[0], skip_special_tokens=True).strip()

def tfive(model_name, sl, tl, input_text):
    tokenizer = T5Tokenizer.from_pretrained(model_name)
    model = T5ForConditionalGeneration.from_pretrained(model_name, device_map="auto")
    prompt = f"translate {sl} to {tl}: {input_text}"
    input_ids = tokenizer.encode(prompt, return_tensors="pt")
    output_ids = model.generate(input_ids, max_length=512)
    translated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
    return translated_text

def teuken(model_name, sl, tl, input_text):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        trust_remote_code=True,
        torch_dtype=torch.bfloat16,
    )
    model = model.to(device).eval()
    tokenizer = AutoTokenizer.from_pretrained(
        model_name,
        use_fast=False,
        trust_remote_code=True,
    )
    translation_prompt = f"Translate the following text from {sl} into {tl}: {input_text}"
    messages = [{"role": "User", "content": translation_prompt}]
    prompt_ids = tokenizer.apply_chat_template(messages, chat_template="EN", tokenize=True, add_generation_prompt=False, return_tensors="pt")
    prediction = model.generate(
        prompt_ids.to(model.device),
        max_length=512,
        do_sample=True,
        top_k=50,
        top_p=0.95,
        temperature=0.7,
        num_return_sequences=1,
    )
    translation = tokenizer.decode(prediction[0].tolist())
    return translation

def bigscience(model_name, sl, tl, input_text):  
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
    inputs = tokenizer.encode(f"Translate to {tl}: {input_text}.", return_tensors="pt")
    outputs = model.generate(inputs)
    translation = tokenizer.decode(outputs[0])
    translation = translation.replace('<pad> ', '').replace('</s>', '')
    return translation

def bloomz(model_name, sl, tl, input_text):  
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    inputs = tokenizer.encode(f"Translate from {sl} to {tl}: {input_text}. Translation:", return_tensors="pt")
    outputs = model.generate(inputs)
    translation = tokenizer.decode(outputs[0])
    translation = translation.replace('<pad> ', '').replace('</s>', '')
    return translation

def eurollm(model_name, sl, tl, input_text):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)  
    prompt = f"{sl}: {input_text} {tl}:"
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=512)
    output = tokenizer.decode(outputs[0], skip_special_tokens=True)
    result = output.rsplit(f'{tl}:')[-1].strip()
    return result

def eurollm_instruct(model_name, sl, tl, input_text):
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    text = f'<|im_start|>system\n<|im_end|>\n<|im_start|>user\nTranslate the following {sl} source text to {tl}:\n{sl}: {input_text} \n{tl}: <|im_end|>\n<|im_start|>assistant\n'
    inputs = tokenizer(text, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=512)
    output = tokenizer.decode(outputs[0], skip_special_tokens=True)
    if f'{tl}:' in output:
        output = output.rsplit(f'{tl}:')[-1].strip().replace('assistant\n', '')
    return output

def nllb(model_name, sl, tl, input_text):
    tokenizer = AutoTokenizer.from_pretrained(model_name, src_lang=sl)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_name, device_map="auto")
    translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=sl, tgt_lang=tl)
    translated_text = translator(input_text, max_length=512)
    return translated_text[0]['translation_text']

def unbabel(model_name, sl, tl, input_text):
    pipe = pipeline("text-generation", model=model_name, torch_dtype=torch.bfloat16, device_map="auto")
    messages = [{"role": "user",
                 "content": f"Translate the following text from {sl} into {tl}.\n{sl}: {input_text}.\n{tl}:"}]
    prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
    outputs = pipe(prompt, max_new_tokens=256, do_sample=False)
    translated_text = outputs[0]["generated_text"]
    start_marker = "<end_of_turn>"
    if start_marker in translated_text:
        translated_text = translated_text.split(start_marker)[1].strip()
    translated_text = translated_text.replace('Answer:', '', 1).strip() if translated_text.startswith('Answer:') else translated_text 
    return translated_text

def mbart_many_to_many(model_name, sl, tl, input_text):
    from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
    model = MBartForConditionalGeneration.from_pretrained(model_name)
    tokenizer = MBart50TokenizerFast.from_pretrained(model_name)
    # translate source to target
    tokenizer.src_lang = languagecodes.mbart_large_languages[sl]
    encoded = tokenizer(input_text, return_tensors="pt")
    generated_tokens = model.generate(
        **encoded,
        forced_bos_token_id=tokenizer.lang_code_to_id[languagecodes.mbart_large_languages[tl]]
    )
    return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]

def mbart_one_to_many(model_name, sl, tl, input_text):
    from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
    article_en = input_text
    model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-one-to-many-mmt")
    tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-one-to-many-mmt", src_lang="en_XX")
    model_inputs = tokenizer(article_en, return_tensors="pt")
    # translate from English
    langid = languagecodes.mbart_large_languages[tl]
    generated_tokens = model.generate(
        **model_inputs,
        forced_bos_token_id=tokenizer.lang_code_to_id[langid]
    )
    return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]

def mbart_many_to_one(model_name, sl, tl, input_text):
    from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
    model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
    tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt")
    # translate to English
    tokenizer.src_lang = languagecodes.mbart_large_languages[sl]
    encoded = tokenizer(input_text, return_tensors="pt")
    generated_tokens = model.generate(**encoded)
    return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]

@spaces.GPU
def translate_text(input_text: str, sselected_language: str, tselected_language: str, model_name: str) -> tuple[str, str]:
    """
    Translates the input text from the source language to the target language  using a specified model.

    Parameters:
        input_text (str): The source text to be translated
        sselected_language (str): The source language of the input text
        tselected_language (str): The target language in which the input text is translated
        model_name (str): The selected translation model name

    Returns:
        tuple: 
            translated_text(str): The input text translated to the selected target language
            message_text(str):  A descriptive message summarizing the translation process. Example: "Translated from English to German with Helsinki-NLP."
    
    Example:
        >>> translate_text("Hello world", "English", "German", "Helsinki-NLP")
        ("Hallo Welt", "Translated from English to German with Helsinki-NLP.")
    """
    
    sl = all_langs[sselected_language]
    tl = all_langs[tselected_language]
    message_text = f'Translated from {sselected_language} to {tselected_language} with {model_name}'
    print(message_text)
    try:    
        if model_name.startswith("Helsinki-NLP"):
            translated_text, message_text = HelsinkiNLP(sl, tl, input_text)
        
        elif model_name == 'Argos':
            translated_text = argos(sl, tl, input_text)
    
        elif model_name == 'Google':
            translated_text = google(sl, tl, input_text)
    
        elif "m2m" in model_name.lower():
            translated_text = mtom(model_name, sl, tl, input_text)
        
        elif model_name == "utter-project/EuroLLM-1.7B-Instruct":
            translated_text = eurollm_instruct(model_name, sselected_language, tselected_language, input_text)
        
        elif model_name == "utter-project/EuroLLM-1.7B":
            translated_text = eurollm(model_name, sselected_language, tselected_language, input_text)
    
        elif 'flan' in model_name.lower():
            translated_text = flan(model_name, sselected_language, tselected_language, input_text)
            
        elif 'teuken' in model_name.lower():
            translated_text = teuken(model_name, sselected_language, tselected_language, input_text)
    
        elif 'mt0' in model_name.lower():
            translated_text = bigscience(model_name, sselected_language, tselected_language, input_text)
    
        elif 'bloomz' in model_name.lower():
            translated_text = bloomz(model_name, sselected_language, tselected_language, input_text)
            
        elif 'nllb' in model_name.lower():
            nnlbsl, nnlbtl = languagecodes.nllb_language_codes[sselected_language], languagecodes.nllb_language_codes[tselected_language]
            translated_text = nllb(model_name, nnlbsl, nnlbtl, input_text)
        
        elif model_name == "facebook/mbart-large-50-many-to-many-mmt":
            translated_text = mbart_many_to_many(model_name, sselected_language, tselected_language, input_text)
    
        elif model_name == "facebook/mbart-large-50-one-to-many-mmt":
            translated_text = mbart_one_to_many(model_name, sselected_language, tselected_language, input_text)
    
        elif model_name == "facebook/mbart-large-50-many-to-one-mmt":
            translated_text = mbart_many_to_one(model_name, sselected_language, tselected_language, input_text)
        
        elif 'Unbabel' in model_name:   
            translated_text = unbabel(model_name, sselected_language, tselected_language, input_text)
        
        elif model_name.startswith('t5'):
            translated_text = tfive(model_name, sselected_language, tselected_language, input_text)
    
    except Exception as error:
        translated_text = error
    finally:
        return translated_text, message_text

# Function to swap dropdown values
def swap_languages(src_lang, tgt_lang):
    return tgt_lang, src_lang 

def create_interface():
    with gr.Blocks() as interface:
        gr.Markdown("### Machine Text Translation with Gradio API and MCP Server")

        with gr.Row():
            input_text = gr.Textbox(label="Enter text to translate:", placeholder="Type your text here, maximum 512 tokens")
        
        with gr.Row():
            sselected_language = gr.Dropdown(choices=options, value = options[0], label="Source language", interactive=True)
            tselected_language = gr.Dropdown(choices=options, value = options[1], label="Target language", interactive=True)
            swap_button = gr.Button("Swap Languages", size="md")
            swap_button.click(fn=swap_languages, inputs=[sselected_language, tselected_language], outputs=[sselected_language, tselected_language], api_name=False, show_api=False)

        model_name = gr.Dropdown(choices=models, label=f"Select a model. Default is {models[0]}.", value = models[0], interactive=True)
        translate_button = gr.Button("Translate")

        translated_text = gr.Textbox(label="Translated text:", placeholder="Display field for translation", interactive=False, show_copy_button=True)
        message_text = gr.Textbox(label="Messages:", placeholder="Display field for status and error messages", interactive=False,
                                  value=f'Default translation settings: from {sselected_language.value} to {tselected_language.value} with {model_name.value}.')
        allmodels = gr.HTML(label="Model links:", value=', '.join([f'<a href="https://huggingface.co/{model}">{model}</a>' for model in models]))

        translate_button.click(
            fn=translate_text, 
            inputs=[input_text, sselected_language, tselected_language, model_name], 
            outputs=[translated_text, message_text]
        )

    return interface

interface = create_interface()
if __name__ == "__main__":
    interface.launch(mcp_server=True)
    # interface.queue().launch(server_name="0.0.0.0", show_error=True, server_port=7860, mcp_server=True)