Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import matplotlib.pylab as plt | |
| import ruptures as rpt | |
| import streamlit as st | |
| from ruptures.metrics import precision_recall | |
| from ruptures.metrics import hausdorff | |
| from ruptures.metrics import randindex | |
| st.title("Change Point Detection") | |
| # Generating Signal | |
| def pw_constant_input(n,dim,n_bkps,sigma): | |
| """Piecewise constant (pw_constant)""" | |
| # n, dim # number of samples, dimension | |
| # n_bkps, sigma # number of change points, noise standard deviation | |
| signal, bkps = rpt.pw_constant(n, dim, n_bkps, noise_std=sigma) | |
| rpt.display(signal, bkps) | |
| return signal,bkps | |
| def pw_linear_input(n,dim,n_bkps,sigma): | |
| """Piecewise Linear""" | |
| # creation of data | |
| # n, dim = 500, 3 # number of samples, dimension of the covariates | |
| # n_bkps, sigma = 3, 5 # number of change points, noise standart deviation | |
| signal, bkps = rpt.pw_linear(n, dim, n_bkps, noise_std=sigma) | |
| rpt.display(signal, bkps) | |
| return signal,bkps | |
| def pw_normal_input(n,dim,n_bkps,sigma): | |
| """Piecewise 2D Gaussian process (pw_normal)#""" | |
| # creation of data | |
| #n = 500 # number of samples | |
| #n_bkps = 3 # number of change points | |
| signal, bkps = rpt.pw_normal(n, n_bkps) | |
| rpt.display(signal, bkps) | |
| return signal,bkps | |
| def pw_wavy_input(n,dim,n_bkps,sigma): | |
| # creation of data | |
| #n, dim = 500, 3 # number of samples, dimension | |
| #n_bkps, sigma = 3, 5 # number of change points, noise standart deviation | |
| signal, bkps = rpt.pw_wavy(n, n_bkps, noise_std=sigma) | |
| rpt.display(signal, bkps) | |
| return signal,bkps | |
| input_list = ['piecewiseConstant','piecewiseLinear','piecewiseNormal','piecewiseSinusoidal'] | |
| generate_signal = st.selectbox(label = "Choose an input signal", options = input_list) | |
| n,dim,n_bkps,sigma = st.columns(4) | |
| with n: | |
| n= st.number_input('No of Samples',min_value=100,step=1) | |
| with dim: | |
| dim = st.number_input('No of dimesions',min_value=1,max_value = 5,step=1) | |
| with n_bkps: | |
| n_bkps = st.number_input('No of breakpoints',min_value=2,step=1) | |
| with sigma: | |
| sigma = st.number_input('Variance',min_value=0,max_value=4,step=1) | |
| if generate_signal == 'piecewiseConstant': | |
| signal,bkps = pw_constant_input(n,dim,n_bkps,sigma) | |
| elif generate_signal== 'piecewiseLinear': | |
| signal,bkps = pw_linear_input(n,dim,n_bkps,sigma) | |
| elif generate_signal == 'piecewiseNormal': | |
| signal,bkps = pw_normal_input(n,dim,n_bkps,sigma) | |
| else: | |
| signal,bkps= pw_wavy_input(n,dim,n_bkps,sigma) | |
| fig, axarr = rpt.display(signal,bkps) | |
| st.pyplot(fig) | |
| def dynp_method(signal,bkps,n_bkps): | |
| # change point detection | |
| model = "l1" # "l2", "rbf" | |
| algo = rpt.Dynp(model=model, min_size=3, jump=5).fit(signal) | |
| my_bkps = algo.predict(n_bkps) | |
| # show results | |
| fig,axarr = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 2)) | |
| #plt.show() | |
| st.pyplot(fig) | |
| return my_bkps | |
| def pelt_method(signal,bkps,n_bkps): | |
| # change point detection | |
| model = "l1" # "l2", "rbf" | |
| algo = rpt.Pelt(model=model, min_size=n_bkps, jump=5).fit(signal) | |
| my_bkps = algo.predict(pen=n_bkps) | |
| # show results | |
| fig, ax_arr = rpt.display(signal, bkps, my_bkps, figsize=(10, 2)) | |
| st.pyplot(fig) | |
| return my_bkps | |
| def bin_seg_method(signal,bkps,n_bkps): | |
| # change point detection | |
| model = "l2" # "l1", "rbf", "linear", "normal", "ar",... | |
| algo = rpt.Binseg(model=model).fit(signal) | |
| my_bkps = algo.predict(n_bkps) | |
| # show results | |
| fg,axxarr = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 2)) | |
| st.pyplot(fig) | |
| return my_bkps | |
| def bot_up_seg(signal,bkps,n_bkps): | |
| # change point detection | |
| model = "l2" # "l1", "rbf", "linear", "normal", "ar",... | |
| algo = rpt.Binseg(model=model).fit(signal) | |
| my_bkps = algo.predict(n_bkps) | |
| # show results | |
| fig,axxar = rpt.show.display(signal, bkps, my_bkps, figsize=(10, 2)) | |
| st.pyplot(fig) | |
| return my_bkps | |
| def win_sli_seg(signal,bkps,n_bkps): | |
| # change point detection | |
| model = "l2" # "l1", "rbf", "linear", "normal", "ar" | |
| algo = rpt.Window(width=40, model=model).fit(signal) | |
| my_bkps = algo.predict(n_bkps) | |
| # show results | |
| fig,axxar= rpt.show.display(signal, bkps, my_bkps, figsize=(10, 2)) | |
| st.pyplot(fig) | |
| return my_bkps | |
| searchmethod_list = ['Dynamic Programming','Pelt','Binary Segmentation','Bottom-up Segmentation','Window sliding segmentation'] | |
| detection_model = st.selectbox(label = "Choose a Detection Method",options = searchmethod_list) | |
| if detection_model== 'Dynamic Programming': | |
| bkps1 = dynp_method(signal,bkps,n_bkps) | |
| elif detection_model=='Pelt': | |
| bkps1 = pelt_method(signal,bkps,n_bkps) | |
| elif detection_model=='Binary Segmentation': | |
| bkps1 = bin_seg_method(signal,bkps,n_bkps) | |
| elif detection_model=='Bottom-up Segmentation': | |
| bkps1 = bot_up_seg(signal,bkps,n_bkps) | |
| else: | |
| bkps1 = win_sli_seg(signal,bkps,n_bkps) | |
| p, r = precision_recall(bkps, bkps1) | |
| st.header('Precision and Recall') | |
| st.write(p, r) | |
| st.header('Hausdorff metric') | |
| st.write(hausdorff(bkps, bkps1)) | |
| st.header('Rand index') | |
| st.write(randindex(bkps, bkps1)) | |