from fastapi import FastAPI, Request from pydantic import BaseModel from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch app = FastAPI() # Load model + tokenizer model_name = "grammarly/coedit-xl" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) class InputText(BaseModel): text: str @app.post("/correct") async def correct_text(data: InputText): input_text = data.text inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=256) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"corrected": result}