import torch
import diffusers
import tqdm as notebook_tqdm
from diffusers import StableDiffusionInpaintPipeline
import cv2
import math
import gradio as gr
import numpy as np
import os
import mediapipe as mp

from mediapipe.tasks import python
from mediapipe.tasks.python import vision
from mediapipe.tasks.python.components import containers

from skimage.measure import label, regionprops
import numpy as np
import matplotlib.pyplot as plt
import cv2


from skimage.measure import label
from skimage.measure import regionprops

from PIL import Image
import torch

import numpy as np
import cv2
from PIL import Image, ImageDraw
import mediapipe as mp
from transformers import pipeline
from skimage.measure import label, regionprops
import gradio as gr


import gradio as gr
import numpy as np
import cv2
from PIL import Image, ImageDraw
import mediapipe as mp
from transformers import pipeline
from skimage.measure import label, regionprops
import matplotlib.pyplot as plt
import spaces


def _normalized_to_pixel_coordinates(
    normalized_x: float, normalized_y: float, image_width: int, image_height: int):
  """Converts normalized value pair to pixel coordinates."""

  # Checks if the float value is between 0 and 1.
  def is_valid_normalized_value(value: float) -> bool:
    return (value > 0 or math.isclose(0, value)) and (value < 1 or math.isclose(1, value))

  if not (is_valid_normalized_value(normalized_x) and is_valid_normalized_value(normalized_y)):
    # TODO: Draw coordinates even if it's outside of the image bounds.
    return None
  x_px = min(math.floor(normalized_x * image_width), image_width - 1)
  y_px = min(math.floor(normalized_y * image_height), image_height - 1)
  return x_px, y_px

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

pipe = StableDiffusionInpaintPipeline.from_pretrained(
    "stabilityai/stable-diffusion-2-inpainting",
    torch_dtype=torch.float16,
).to(device)

#from huggingface_hub import login
#login()
#pipe2 = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
#pipe2.to("cuda")

BG_COLOR = (192, 192, 192) # gray
MASK_COLOR = (255, 255, 255) # white

RegionOfInterest = vision.InteractiveSegmenterRegionOfInterest
NormalizedKeypoint = containers.keypoint.NormalizedKeypoint

# Create the options that will be used for InteractiveSegmenter
base_options = python.BaseOptions(model_asset_path='model.tflite')
options = vision.ImageSegmenterOptions(base_options=base_options, output_category_mask=True)


def create_bounding_box_mask(image):
    image = 1 - image

    # Find the coordinates of the non-background pixels
    y_indices, x_indices = np.nonzero(image)
    if not y_indices.size or not x_indices.size:
        return None  # No areas found, you might return an empty mask or raise an error

    # Calculate the bounding box coordinates
    x_min, x_max = x_indices.min(), x_indices.max()
    y_min, y_max = y_indices.min(), y_indices.max()

    # Create a new mask for the bounding box
    bounding_mask = np.zeros_like(image, dtype=np.uint8)  # Ensure it's a single-channel mask
    bounding_mask[y_min:y_max+1, x_min:x_max+1] = 1  # Fill the bounding box with white 1

    return bounding_mask


@spaces.GPU
def segment_2(image_np, coordinates):
    OVERLAY_COLOR = (255, 105, 180)  # Rose

    # Créer le segmenteur
    with python.vision.InteractiveSegmenter.create_from_options(options) as segmenter:

        image = mp.Image(image_format=mp.ImageFormat.SRGB, data=image_np)

        # Enlever les parenthèses
        coordinates = coordinates.strip("()")

        # Séparer les valeurs par la virgule
        valeurs = coordinates.split(',')

        # Convertir les chaînes de caractères en nombres flottants
        x = float(valeurs[0])
        y = float(valeurs[1])

        # Récupérer les masques de catégorie pour l'image
        roi = RegionOfInterest(format=RegionOfInterest.Format.KEYPOINT,
                               keypoint=NormalizedKeypoint(x, y))
        segmentation_result = segmenter.segment(image, roi)
        category_mask = segmentation_result.category_mask

        # Trouver la boîte englobante de la région segmentée
        mask = (category_mask.numpy_view().astype(np.uint8)*255)

        # Trouver la boîte englobante de la région segmentée
        x, y, w, h = cv2.boundingRect(mask)

        # Convertir l'image BGR en RGB
        image_data = cv2.cvtColor(image.numpy_view(), cv2.COLOR_BGR2RGB)

        # Créer une image d'incrustation avec la couleur désirée (par exemple, (255, 0, 0) pour le rouge)
        overlay_image = np.zeros(image_data.shape, dtype=np.uint8)
        overlay_image[:] = OVERLAY_COLOR

        # Créer la condition à partir du tableau category_masks
        alpha = np.stack((category_mask.numpy_view(),) * 3, axis=-1) <= 0.1

        # Créer un canal alpha à partir de la condition avec l'opacité désirée (par exemple, 0.7 pour 70%)
        alpha = alpha.astype(float) * 0.5  # Réduire l'opacité à 50%

        # Fusionner l'image originale et l'image d'incrustation en fonction du canal alpha
        output_image = image_data * (1 - alpha) + overlay_image * alpha
        output_image = output_image.astype(np.uint8)

        # Dessiner un point blanc avec une bordure noire pour indiquer le point d'intérêt
        thickness, radius = 6, -1
        keypoint_px = _normalized_to_pixel_coordinates(x, y, image.width, image.height)
        cv2.circle(output_image, keypoint_px, thickness + 5, (0, 0, 0), radius)
        cv2.circle(output_image, keypoint_px, thickness, (255, 255, 255), radius)


        image_width, image_height = output_image.shape[:2]
        bounding_mask = create_bounding_box_mask(mask)
        bbox_mask_image = Image.fromarray((bounding_mask * 255).astype(np.uint8))
        bbox_img = bbox_mask_image.convert("RGB")
        bbox_img.resize((image_width, image_height))

        return output_image,bbox_mask_image
    
@spaces.GPU
def generate_2(image_file_path, bbox_image, prompt):

    # Read image
    img = Image.fromarray(image_file_path).convert("RGB")

    # Generate images using images and prompts
    images = pipe(prompt=prompt,
                  image=img,
                  mask_image=bbox_image,
                  generator=torch.Generator(device="cuda").manual_seed(0),
                  num_images_per_prompt=3,
                  plms=True).images

    # Create an image grid
    def image_grid(imgs, rows, cols):
        assert len(imgs) == rows*cols

        w, h = imgs[0].size
        grid = Image.new('RGB', size=(cols*w, rows*h))
        grid_w, grid_h = grid.size

        for i, img in enumerate(imgs):
            grid.paste(img, box=(i%cols*w, i//cols*h))
        return grid

    grid_image = image_grid(images, 1, 3)
    return grid_image


def onclick(evt: gr.SelectData, image):
    if evt:
        x, y = evt.index
        # Normalize the coordinates by 0-1
        normalized_x = round(x / image.shape[1], 2)
        normalized_y = round(y / image.shape[0], 2)
        return normalized_x, normalized_y
    else:
        return None, None



# Assurez-vous d'importer ou de définir les fonctions segment et generate_2 ici

def callback(image, coordinates, prompt):
    # Convertir l'image PIL en chemin de fichier temporaire ou en numpy array si nécessaire
    # Appeler la fonction segment avec les coordonnées et l'image
    segmented_image, bbox_image = segment_2(image, coordinates)

    # Appeler la fonction generate_2 avec l'image, bbox_image, et le prompt
    grid_image = generate_2(image, bbox_image, prompt)

    # Retourner les images résultantes pour l'affichage
    return segmented_image, grid_image


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(type="numpy", label="Upload Image", interactive=True)
            coordinates_output = gr.Textbox(label="Coordinates", interactive=False)
            prompt_input = gr.Textbox(label="What do you want to change?")
            process_button = gr.Button("Process")

        with gr.Column():
            segmented_image_output = gr.Image(type="pil", label="Segmented Image")
            grid_image_output = gr.Image(type="pil", label="Generated Image Grid")

    image_input.select(onclick, inputs=[image_input], outputs=coordinates_output)

    process_button.click(
        fn=callback,
        inputs=[image_input, coordinates_output, prompt_input],
        outputs=[segmented_image_output, grid_image_output]
    )

demo.launch(debug=True)